4. Представление алгебр и модули

Обозначим через EndpV алгебру линейных операторов векторного пространства V над полем Р и пусть А – произвольная алгебра.

Определение 8. Представлением алгебры А называется сопоставление каждому элементу aÎA линейного оператора Î EndpV, причем должны выполняться следующие условия:

1)         1®, где  - единичный оператор;

2)         pa®p; pÎP; aÎA;

3)         a+b®+; a, bÎA; , Î EndpV;

4)         ab®; a, bÎA.


Определение 8 является иной формулировкой определения модуля над кольцом А, если кольцо является алгеброй над полем Р.

Определение 9. Модулем над алгеброй А называется абелева группа по сложению М, для которой определена операция умножения элементов из А на элементы из М: amÎM, aÎA, mÎM и при этом выполняются следующие условия:

1)         (a+a¢)m=am+a¢m;

2)         (aa¢)m=a(a¢m);

3)         em=m;

4)         a(m+m¢)=am+am¢;

5)         (aa)m=a(am)=a(am), aÎP.

Здесь дано определение левого модуля.

Теорема 1. Всякий левый (правый) модуль М над кольцом А, которым является алгебра, представляет собой также векторное пространство над полем Р, причем для всех aÎA, mÎM, lÎP справедливы равенства

l(ma)=(lm)a=m(la); l(am)=a(lm)=(la)m.

2.5 Характеры представлений

1. Определение и свойства характеров

Определение 1. След матрицы А=(аij) размера n´n есть сумма ее элементов, стоящих по главной диагонали:

TrA=a11+a22+…+ann (14)

 

Определение 2. След матрицы Т(g), представляющий элемент g в матричном представлении Т группы G, называется характеристикой элемента g в представлении Т и обозначается cT(g).

Определение 3. Совокупность характеристик всех элементов g группы G, составленных для данного представления Т, называется характером представления Т и записывается как cT. Если Т – матричное представление группы G над полем вещественных или комплексных чисел Р, то характеристика каждого элемента группы является вещественным или комплексным числом и, следовательно, характер есть отображение cT группы G в поле Р, определяемое следующим образом:

cT: G®P: cT(g)=TrT(g).

 

Свойство 1. Характеры эквивалентных представлений совпадают.

Свойство 2. Характер представления Т группы G постоянен на каждом классе сопряженных элементов: cT(g-1hg)= cT(h), g, hÎG.

Определение 4. Вектор x¹0 из векторного пространства V над числовым полем Р называется собственным вектором линейного оператора , действующего в этом пространстве, если он удовлетворяет соотношению x=lx, где l - число, которое называется собственным значением (характеристическим числом) линейного оператора.

Условие того, что вектор х – собственный вектор записывается в виде матричного уравнения

(А - lI)х = 0, (15)

где х – вектор-столбец с неизвестными координатами x1, x2, …, xn. Условием существования ненулевого решения системы (15) является равенство нулю его определителя:


|A - lI| = 0. (16)

Это уравнение степени n относительно l называется характеристическим или вековым уравнением матрицы А линейного оператора, а его корни называются собственными значениями матрицы А, они являются собственными значениями оператора .

Свойство 3. Если l1, l2, …, ln – собственные значения линейного оператора , то cT(g)=TrT(g)= l1+l2+ …+ln.

Так как здесь рассматриваем конечные группы, то имеет место следующее свойство.

Свойство 4. Если Т – представление группы G над полем Р, то для каждого элемента gÎG значение cT(g) равно сумме корней из единицы степени, равной порядку элемента g.

Свойство 5. Если Т – представление группы G, то для каждого gÎG справедливо равенство cT(g-1)= cT(g).

Свойство 6. Если  и  - характеры неприводимых представлений группы G, то

 (17)

Равенство (17) называется соотношением ортогональности, для характеров, неприводимых представлений группы G.

Свойство 7. (второе соотношение ортогональности) Пусть T1, T2, …, Tm – все неэквивалентные представления группы G, K(a), K(b) – классы элементов группы G, сопряженных соответственно с a и b. Тогда


 (18)

где |G| - число элементов в группе G; |K(b)| - число элементов в классе сопряженных элементов K(b);  - характеры неприводимых представлений Ti, i=1, 2, …, m.


Информация о работе «Теория симметрии молекул»
Раздел: Химия
Количество знаков с пробелами: 74215
Количество таблиц: 5
Количество изображений: 9

Похожие работы

Скачать
90168
0
3

... , а затем и более фундаментального, одновременно и самого абстрактного (динамического) понимания симметрии. 2. 2.2.Симметрия кристаллов. Правильную, симметричную форму кристаллов издавна объясняли симметричным расположением атомов. Само существование атомов было еще гипотезой, но внешнее проявление стройного порядка заставляло предполагать внутреннюю причину. Быть может, правильные пирамиды, ...

Скачать
53953
1
0

... : правый рукав соответствует левому, правая штанина — левой. Пуговицы на куртке и на рубашке сидят ровно посередине, а если и отступают от нее, то на симметричные расстояния. Но на фоне этой общей симметрии в мелких деталях мы умышленно допускаем асимметрию, например расчесывая воло­сы на косой пробор — слева или справа. Или, скажем, помещая на костюме асимметричный кармашек на груди. Или надев ...

Скачать
53262
0
4

... требуется оценить отклонение от нулевого положения, например на руле грузовика или на штурвале корабля. Симметрия проявляется в многообразных структурах и явлениях неорганического мира и живой природы. В мир неживой природы очарование симметрии вносят кристаллы. Каждая снежинка- это маленький кристалл замерзшей воды. Форма снежинок может быть очень разнообразной, но все они обладают симметрией - ...

Скачать
20537
0
0

... ), и ее вклад в теплоемкость равен 1. Вращательная теплоемкость многоатомных газов. Свободную энергию многоатомного газа, как и двухатомного, можно представить в виде суммы трех частей — поступательной, вращательной и колебательной. Поступательная часть характеризуется теплоемкостью и химической постоянной, равными:   Благодаря большой величине моментов инерции многоатомных молекул (и ...

0 комментариев


Наверх