2. Таблицы характеров неприводимых представлений

Приведенные свойства характеров позволяют описать построение таблиц характеров неприводимых представлений. Строки таблицы будем нумеровать, как принято в теории представлений групп характерами, но одновременно будем указывать обозначения, принятые в молекулярной спектроскопии и кристаллографии: одномерные представления обозначаются A1, B1, A2, B2, …, двумерные – E1, E2, … и, наконец, трехмерные – F1, F2, … .

Так как по свойству 2 характеры постоянны на каждом классе сопряженных элементов, то столбцы таблицы нумеруются классами сопряженных элементов. Под обозначением класса сопряженных элементов указывается число элементов в классе – порядок класса. Рассмотрим в качестве примера группу C3V. Классы сопряженных элементов группы C3V имеют вид K1={I}, K2={C3, C32}, K3={, , }. Известно, что группа C3V имеет три неприводимых представления, характеры которых приведены в табл. 2.

Таблица 2.

Классы

K1={I}

K2={C3, C32}

K3={, , }

Порядок класса 1 2 3

A1

A2

E

1

1

2

1

1

-1

1

-1

0


3. Разложение характеров по неприводимым представлениям

В соответствии с рассмотренными свойствами характер приводимого представления cT можно представить в виде разложения по характерам неприводимых представлений :

,

где ni – число, показывающее, сколько раз характер неприводимого представления Ti содержится в характере приводимого представления Т. На основании свойств ортогональности это число легко определяется, а именно:

. (19)

Формула (19) имеет важные применения в теории молекулярных спектров для определения числа состояний данного типа симметрии.

4. Определение характеров неприводимых представлений при применении групповых алгебр групп

Для достаточно широкого класса групп желательно иметь общий метод нахождения характеров неприводимых представлений.

Пусть дана группа G. Найдем классы сопряженных элементов Ki группы и обозначим  сумму элементов группы, принадлежащих классу Ki. Здесь Сi являются элементами групповой алгебры PG группы G над полем Р. Проверим, перестановочны ли элементы Сi со всеми элементами алгебры PG. Для этого достаточно проверить, что для всех gÎG справедливы равенства gСiig или Сi=g-1Сig.

Действительно,


g-1 Сig=g-1(k1+k2+…)g=g-1k1g+g-1k2g+…

Так как в групповой алгебре выполним дистрибутивный закон, то очевидно, что правая часть содержит все элементы Сi и, следовательно, равна Сi.

Определение 5. Множество элементов алгебры, перестановочных со всеми элементами алгебры, называется центром алгебры.

Определение 6. Подмножество В алгебры называется подалгеброй алгебры А, если оно является подпространством векторного пространства А, и из того, что b1, b2ÎB, следует, что .

Можно доказать, что элементы Ci образуют базис центра Z групповой алгебры PG:

Алгебру можно записать, задав таблицу умножения базисных элементов

. (20)

Элементы Cijk называются структурными константами алгебры. Для элементов Сi, образующих базис центра групповой алгебры, формула (20) принимает вид

. (21)

Теперь, на основании выражения (21), фиксируя индекс i (что обозначим, взяв этот индекс в скобки), получим матрицу C(i) коэффициентов Cijk. Эту матрицу можно рассматривать как матрицу линейного оператора , действующего в векторном пространстве, которым является центр алгебры Z. Действие его на базисные элементы Cj состоит в умножении Ci на Cj. Для того, чтобы записать матрицу C(i), надо рассмотреть столбец, в котором записаны произведения Ci на Cj. В результате получим матричное представление центра групповой алгебры. Матричное представление центра будет центром матричного представления всей алгебры. Иначе говоря, все матрицы C(i) коммутируют со всеми элементами матричного представления алгебры и между собой.

Мы приходим к задаче, аналогичной известной квантово-механической задаче: дана система коммутирующих между собой операторов, найти собственные значения и собственные векторы этих операторов. Оказывается, решение такой задачи имеет важное значение и для нахождения характеров неприводимых представлений.

Полученные выше матрицы Ci являются образующими элементами алгебры матриц, изоморфной алгебре Бозуа–Меснера, которая определяется следующим образом.

Назовем i-ой матрицей смежности Ai матрицу порядка, равного порядку группы G, строки и столбцы которой занумерованы элементами группы G, причем элементы матрицы Ai с номером (g, h), g, hÎG определяются как

Матрицы Ai состоят из нулей и единиц, поэтому их называют (0, 1) – матрицами.

Определение 7. Алгеброй Боуза – Меснера называется подалгебра алгебры матриц Mn(C), порожденная (0, 1) – матрицами Ai, i=1, 2, …, d, удовлетворяющими следующим условиям:

1)         A1=E, где Е – единичная матрица;

2)         A1+A2+…+Ad=J, где J – матрица, все элементы которой равны единице;

3)         , i¢Î[1, 2, …, d], где  - матрица, транспонированная с матрицей Ai;

4)         ;

5)         .

Если построить матрицы смежности для группы G по указанному выше правилу, то они образуют базис алгебры Боуза–Меснера в соответствии с определением 7.

Если А – алгебра Боуза–Меснера, то из коэффициентов в соотношении  можно образовать матрицы  порядка d. Рассмотрим алгебру В, порожденную матрицами C1, C2, …, Cd, являющуюся подалгеброй алгебры d´d матриц Md(C). Эта алгебра изоморфна алгебре А Боуза–Меснера. В силу того, что в алгебре изоморфные объекты не различаются, будем называть ее также алгеброй Боуза–Меснера.

Если рассматривать А как векторное пространство, то в А имеется естественный базис, состоящий из матриц Ai, которые по условию 5 определения 7 попарно коммутируют. Кроме того, эти матрицы нормальны (т. е. , где  - комплексно-сопряженная и транспонированная с А матрица). Все матрицы Ai можно одновременно диагонализировать с помощью унитарной матрицы S. Столбцы являются общими собственными векторами матриц Ai, образующими базис общих собственных подпространств, а ее диагональные элементы являются собственными значениями матриц Ai, соответствующими общим собственным векторам. Если


, (22)

где diag – диагональная матрица, вне главной диагонали которой стоят нули, то pi(1), pi(2), …, pi(d) – указанные собственные значения. Тогда можно записать

 k, i=1, 2, …, d,

где E1+E2+…+Ed=E, Ei2=Ei, EiEj=EjEi=0, i¹j.

Итак, в А появился второй базис, состоящий из идемпотентов Ei, i=1, 2, …, d, который связан с общими собственными векторами матриц Ai, из которых состоят линейно независимые столбцы матриц S.

Определение 8. Квадратная матрица Р порядка d, (j, i)-м элементом которой является pi(j), называется первой собственной матрицей алгебры Боуза–Меснера А. Матрица Q=(gi(j)) такая, что PQ=QP=|G|E, называется второй собственной матрицей Боуза–Меснера.

Возвращаясь к задаче определения характеров неприводимых представлений, сформулируем в приспособленном для наших целей виде теорему, позволяющую обосновать приводимый ниже алгоритм нахождения неприводимых характеров.

Теорема 1. Если G – конечная группа, а Т – ее таблица характеров, А – алгебра Боуза–Меснера классов сопряженных элементов, изоморфная алгебре пересечений В, P=(pi(j)) и Q=(qi(j)) – соответственно первая и вторая собственная матрицы этих алгебр, то таблица характеров определяется как произведение матриц в виде


где k1, k2, …, kd – мощности классов сопряженных элементов, mi определяются по формуле mi=fi2, где fi – степени неприводимых представлений.

Теорема 2. Каждый столбец таблицы характеров является общим левым собственным вектором матрицы Ci, Cj, …, Cd, а каждая строка является общим правым собственным вектором этих матриц. И наоборот, каждый стандартный общий левый собственный вектор матриц Ci и, каждый стандартный общий правый собственный вектор этих матриц с точностью до расположения строк и столбцов является строкой и соответственно столбцом матрицы характеров.

Замечание. Собственный вектор матрицы называется стандартным, если его правая координата равна единице.

5. Алгоритм нахождения характеров неприводимых представлений

Алгоритм. Для нахождения характеров неприводимых представлений группы G, надо:

1. Найти классы сопряженных элементов группы G, т. е. классы K1, K2, …, Kd.

2. Построить групповую алгебру CG группы G над полем С и алгебру классов сопряженных элементов Ci, i=1, 2, …, d необходимо определить структурные константы Cijk алгебры классов сопряженных элементов.

3. Построить алгебру Боуза–Меснера, для чего необходимо найти матрицы Ci=.

4. Найти собственные числа матриц Ci и соответствующие им правые собственные векторы.


Информация о работе «Теория симметрии молекул»
Раздел: Химия
Количество знаков с пробелами: 74215
Количество таблиц: 5
Количество изображений: 9

Похожие работы

Скачать
90168
0
3

... , а затем и более фундаментального, одновременно и самого абстрактного (динамического) понимания симметрии. 2. 2.2.Симметрия кристаллов. Правильную, симметричную форму кристаллов издавна объясняли симметричным расположением атомов. Само существование атомов было еще гипотезой, но внешнее проявление стройного порядка заставляло предполагать внутреннюю причину. Быть может, правильные пирамиды, ...

Скачать
53953
1
0

... : правый рукав соответствует левому, правая штанина — левой. Пуговицы на куртке и на рубашке сидят ровно посередине, а если и отступают от нее, то на симметричные расстояния. Но на фоне этой общей симметрии в мелких деталях мы умышленно допускаем асимметрию, например расчесывая воло­сы на косой пробор — слева или справа. Или, скажем, помещая на костюме асимметричный кармашек на груди. Или надев ...

Скачать
53262
0
4

... требуется оценить отклонение от нулевого положения, например на руле грузовика или на штурвале корабля. Симметрия проявляется в многообразных структурах и явлениях неорганического мира и живой природы. В мир неживой природы очарование симметрии вносят кристаллы. Каждая снежинка- это маленький кристалл замерзшей воды. Форма снежинок может быть очень разнообразной, но все они обладают симметрией - ...

Скачать
20537
0
0

... ), и ее вклад в теплоемкость равен 1. Вращательная теплоемкость многоатомных газов. Свободную энергию многоатомного газа, как и двухатомного, можно представить в виде суммы трех частей — поступательной, вращательной и колебательной. Поступательная часть характеризуется теплоемкостью и химической постоянной, равными:   Благодаря большой величине моментов инерции многоатомных молекул (и ...

0 комментариев


Наверх