1.20 Расчёт надёжности системы с постоянным общим резервированием
Резервирование называется общим, если резервируется вся система, состоящая из последовательного соединения n элементов.
Основная цепь содержит n элементов.
Число резервных цепей равно m, кратность резервирования равна m. Общее число резервных элементов равно mn.
Определим количественные характеристики надёжности в случае постоянного включения резервных цепей.
Введём обозначения
i = 1, 2, ……..,n - вероятность безотказной работы элемента Эio ;
j = 1, 2, ……..,m; i = 1, 2, …….,n - вероятность безотказной работы элемента Эij.
Запишем вероятность безотказной работы j - ой цепи
j = 0, 1, ……,m (1.7)
Вероятность отказа j - ой цепи
(1.8)
Определим вероятность безотказной работы системы
(1.9)
Подставим (1.7) в (1.9). Получим
Определим вероятность безотказной работы системы
Частный случай: основная и резервные цепи имеют одинаковую надёжность, т.е.
Тогда
;
;
Рассмотрим экспоненциальный закон надёжности, т.е.
Тогда ;
или
- интенсивность отказов цепи, состоящей из n элементов.
Вероятность безотказной работы системы.
Определим интенсивность отказов системы
;
;
Определим среднее время безотказной работы резервированной системы
где - среднее время безотказной работы нерезервированной системы.
Т.о. с увеличением кратности резервирования m среднее время безотказной работы растёт, но очень медленно. Наибольший прирост наблюдается при переходе от нерезервированной системы к резервированной с кратностью m = 1.
1.21 Расчёт надёжности системы с постоянным поэлементным резервированием
При поэлементном резервировании резервируются отдельно элементы системы.
Определим количественные характеристики надёжности системы.
Введём обозначения:
i = 1, 2, ……..,n - вероятность безотказной работы элемента Эio на интервале времени (0, t);
j = 1, 2, ……..,m; i = 1, 2, …….,n - вероятность безотказной работы элемента Эij на интервале времени (0, t).
Запишем вероятность отказа i - й группы.
Имеем
i = 1, 2, …….,n.
Запишем вероятность безотказной работы i - ой группы. Имеем
Запишем вероятность безотказной работы системы с поэлементным резервированием
или
Для равнонадёжных элементов системы имеем:
1.22 Режим облегченного (тёплого) резерва
Рассмотрим случай, когда время безотказной работы всех элементов изделия подчиняется экспоненциальному закону распределения. В этом случае процессы, характеризующие работу изделия являются марковскими. Для определения характеристик надёжности можно использовать математический аппарат теории марковских случайных процессов.
В режиме облегченного резерва резервные элементы находятся в режиме недогрузки до момента их включения в работу. Пусть l1 - интенсивность отказа резервного элемента в режиме недогрузки до момента их включения в работу. l0 - интенсивность отказа резервного элемента в состоянии работы.
Введём в рассмотрение состояния ,
S0 - основной элемент исправен и работает, m резервных элементов исправны и находятся в режиме недогрузки.
S1 - основной элемент отказал, работает 1 - ый резервный элемент, (m - 1) резервные элементы исправны и находятся в режиме недогрузки.
S2 - отказал 1 - ый резервный элемент, работает 2 - ой резервный элемент, (m - 2) резервных элементов исправны и находятся в режиме недогрузки.
Si - отказал i - й резервный элемент, работает i - й резервный элемент, (m - i ) резервных элементов исправны и находятся в режиме недогрузки.
Sm - отказал (m - 1) - ый элемент, работает m - ый резервный элемент.
Sm+1 - отказал m -ый резервный элемент.
Запишем систему дифференциальных уравнений Колмогорова. Для этого введём обозначения:
P0(t) - вероятность нахождения резервированной системы в момент времени t в состоянии S0.
Pi(t) - вероятность нахождения резервированной системы в момент времени t в состоянии Si , i = 0, 1, ….., m, m + 1.
;
………………………………………………….
………………………………………………….
.
Начальные условия:
.
Применим к системе дифференциальных уравнений Колмогорова преобразование Лапласа. Получим систему линейных алгебраических уравнений вида: Pi(t) - оригинал
Pi(S) - изображение по Лапласу
i = 0, 1, ……, m +1
…………………………………………….
…………………………………………….
Решая систему уравнений получим
Найдём оригинал . Имеем
где
Здесь - вероятность отказа резервированной системы с облегченным резервированием.
Определим вероятность безотказной работы системы с облегченным резервированием. Имеем:
Определим среднее время безотказной работы системы с облегченным резервированием. Имеем:
Формула бинома Ньютона
где
При a = 1 имеем:
Выполнив преобразование, получим:
где .
Определим частоту отказов резервированной системы. Имеем
;
или
Определим интенсивность отказов резервированной системы. Имеем
... первоначальное количество ошибок можно оценить как: Поставленная задача позволяет определить такие важные характеристики функционирования программного комплекса, как: расчет текущего времени наработки до отказа; расчет среднего времени наработки до отказа за все время моделирования работы системы; расчет вероятности отказа ПО в единицу расчёт коэффициента готовности Таким образом, наша ...
... , что каждый из них можно представить как шкалу в многомерном фазовом пространстве, тогда конкретным АСУ в этом пространстве будут соответствовать точки или определенные области. 2.2. Классификация систем и автоматизация управления сложными системами Прежде всего система – это целостная совокупность некоторых элементов, не сводящаяся к простой сумме своих частей, т.е. представляющая собой ...
... разных этапах производства (потребления) электроэнергии. Основная цель создания таких систем – дальнейшеё повышение эффективности технических и программных средств автоматизации и диспетчеризации СЭС для улучшения технико-экономических показателей и повышения качества и надёжности электроснабжения ПП. Реформирование электроэнергетики России требует создания полномасштабных иерархических систем ...
... , повысить вероятность выявления дефектов и, с другой стороны, снизить различные технико-экономические затраты на проведение контроля. 2. Проектирование системы контроля знаний 2.1 Общая структура системы По своей логической структуре система состоит из трёх частей: - подсистемы конфигурирования теста; - подсистемы тестирования; - подсистема сервиса. ...
0 комментариев