Расчет ременной передачи

Модернизация станка Nagel
Анализ недостатков существующего оборудования для финишной обработки Современные методы повышения долговечности деталей Сущность холодной пластической деформации металлов Явления, происходящие в поверхностном слое при обработке ППД Шероховатость поверхности Напряжения Цель и задачи дипломного проекта Режимы обкатывания Подача ОБОСНОВАНИЕ ТЕХНИЧЕСКОЙ ХАРАКТЕРИСТИКИ СТАНКА Расчет зубчатой передачи Расчет критической частоты вращения эталон-вала Расчет ременной передачи Рычаг зажима шатунных шеек Обоснование самоустановки накатных роликовых головок Расчет накатной роликовой головки Кинематический расчет Синхронизация движений параллельно работающих гидроцилиндров Роликовые головки ЭКОНОМИЧЕСКАЯ ЭФФЕКТИВНОСТЬ ПРОЕКТА Расчет необходимого количества оборудования Расчет капитальных вложений Калькуляция себестоимости обработки детали на операции
120425
знаков
10
таблиц
11
изображений

4.1.6 Расчет ременной передачи

Исходные данные:

i – передаточное отношение, i=1/2,85;

n – частота вращения приводного шкива, n=1450 об/мин;

d1 – расчетный диаметр приводного шкива, принимается d1=90 мм.

Расчетный диаметр ведомого шкива:

, (47)

 (мм).

Окружная скорость ремня:

, (48)

 (м/с).

Межосевое расстояние, предварительно а=1500 мм.

Угол обхвата ремнем приводного шкива:


, (49)

˚.

Расчетная длина ремня:

, (50)

 (мм).

По ГОСТ 1284.1-80 принимается длина ремня Lр=3750 мм, тогда действительное межосевое расстояние получается:

, (51)

 (мм).

Мощность передачи:

, (52)

где N0 – номинальная мощность передачи с одним ремнем, кВт, N0=1,21 кВт;

С1 – коэффициент угла обхвата, С1=0,98;

С2 – коэффициент, учитывающий длину ремня, С2=1,16;

С3 – коэффициент режима работы, С3=1,1.


 кВт.

Число ремней:

, (53)

где С4 – коэффициент, учитывающий число ремней, С4=0,95.

 (шт).

Сечение ремней принимается типа А. Общие размеры и размеры канавок шкивов берутся в соответствии с ГОСТ 20895-75

 

4.2. Расчет зажимных рычагов

 

4.2.1 Рычаг зажима коренных шеек

Расчет силовых параметров.

В качестве исходных данных принимается усилие обкатывания коренных шеек Р3=7250 Н.

Расчетная зависимость рычажного механизма [5]:

, (54)

где Q – сила на приводе, Н;

η – КПД рычажного механизма, η=0,9 [5];

l1, l2 – плечи рычага, мм; конструктивно принимается l1=405 мм, l2=550 мм.

Используя формулу (54), имеем:


,

 (Н).

Реакция в опоре В:

, (55)

 (Н).

Диаметр опоры из расчета на смятие [5]:

, (56)

,  мм.

Принимается, из соображений унификаций, d=30 мм.

Ширина рычага конструктивно принимается b=15 мм. В связи с тем, что сечение рычага представляет собой тонкий прямоугольник, по сути пластину, вытянутую в сторону направления нагрузки, требуется расчет на устойчивость.

Расчет на устойчивость рычага коренных шеек.

Расчет на устойчивость проведем в форме определения коэффициента запаса устойчивости [6]:

, (57)

где [n] – допустимый запас устойчивости, [n]=3.

Коэффициент запаса устойчивости определяют по формуле [6]:


, (58)

где Fкр – критическая разрушающая нагрузка, Н;

F – действующая нагрузка, F=7250 Н.

Критическую нагрузку определяют по формуле Эйлера [6]:

, (59)

где Jmin – минимальное значение осевого момента для данного сечения, мм4;

μ – коэффициент вида нагружения, μ=0,5;

l – высота рычага, мм; l=175 мм.

Минимальное значение осевого момента инерции:

, (60)

 (мм4).

Площадь сечения:

, (61)

где h – длина рычага, мм; конструктивно h=600 мм.

 (мм2).

Необходимо определить пределы применимости формулы Эйлера. Формула Эйлера применима лишь тогда, когда расчетная гибкость пластины больше предельной гибкости материала [6]. Для конструктивного материала Ст.3 предельная гибкость λпр=100.

Условие применимости формулы Эйлера:

λ≥[λ]пр. (62)

Расчетная гибкость пластины:

, (63)

.

Условие применимости формулы Эйлера выглядит так:

20,2<100.

Т.о. формулу Эйлера в данном случае применять нельзя. Если формула Эйлера не применима, расчет ведут по эмпирической формуле Ясинсого, определяя критическое напряжение, возникающее в поперечном сечении сжатой пластины [6]:

, (64)

где а – эмпирический коэффициент, для Ст.3 а=258 МПа;

b – эмпирический коэффициент, для Ст.3 b=0,68 МПа.

 (МПа).

Критическая нагрузка:

, (65)


 (кН).

Используя формулу (58), имеем:

.

Условие устойчивости: 28,9>3. Т.о. условие устойчивости выполнено. Рычаг коренных шеек является устойчивым. В качестве конструктивного материала принимается Ст.3.

Перемещение силового привода:

, (66)

где Sq и Sp – перемещения в точках приложения сил Q и P соответственно, мм; конструктивно принимается перемещение рычага в зоне зажима Sp=62 мм.

 (мм).

Расчет силового гидроцилиндра

Исходные данные:

конструкция – двухсторонний, не симметричный;

рабочая сила – F=8860 Н;

скорость прямого хода – V=1 м/мин = 0,016 м/с;

длина хода – 46 мм.

Выбор рабочей жидкости для гидросистемы.

В качестве рабочей жидкости для гидропривода в металлорежущих станках выбирается обычно веретенное, турбинные или индустриальные масла в зависимости от рабочих давлений и температуры. В соответствии с рекомендациями [27] выбираем масло ИГП-18, кинематическая вязкость ν=18,5 сСт.

Выбор рабочего давления в напорной полости гидроцилиндра.

Выбор рабочего давления в напорной полости гидроцилиндра производится в зависимости от наибольшего полезного усилия, развиваемого гидроцилиндром:

, (67)

где D – диаметр поршня цилиндра, мм; конструктивно по ГОСТ 6540-68 принимается стандартный D=40 мм;

η – КПД гидроцилиндра, η=0,9.

 (МПа).

Диаметр штока:

, (68)

где  - коэффициент диаметра штока, =0,6.

 (мм).

По ряду стандартных размеров принимаем d=22 мм, ГОСТ 6540-68.

Усилие, развиваемое гидроцилиндром при обратном ходе:

, (69)

 (кН).

Расход масла определяется по формуле:

, (70)


 (л/с) = 1,2 л/мин.

Скорость штока при обратном ходе:

, (71)

 (м/с) = 1,36 м/мин.

Выбор конструкции и типа уплотнений поршня и штока гидроцилиндра.

В качестве уплотнительного устройства принимается кольцо резиновое уплотнительное круглого сечения. Основные размеры колец по ГОСТ 6969-54:

- уплотнения поршня D=40 мм, d=36 мм;

- уплотнения штока D=26 мм, d=22 мм, Н=3 мм.

Расчет корпуса гидроцилиндра.

Внутренний диаметр расточки корпуса соответствует диаметру поршня и принимается dк=40 мм. Минимально допустимая толщина стенки δ (мм) трубопровода зависит от рабочего давления p (МПа) и рассчитывается по формуле:

, (72)

где σ – допустимое напряжение на разрыв для материала трубопровода, МПа; для стали 20 σ=140 МПа.

 (мм).


Для обеспечения жесткости гидроцилиндра принимаем толщину стенки δ=4 мм.

Расчет потерь в трубопроводе.

Различают два режима течения жидкости – ламинарный (частицы жидкости движутся параллельно стенкам трубопровода) и турбулентный (частицы движутся беспорядочно).

Определение режима течения жидкости по безразмерному числу Рейнольда:

, (73)

где d – внутренний диаметр трубопровода, d=4,6 мм.

.

Поток считается ламинарным для гладких круглых труб, если Rе<2100.

Поскольку Rе меньше критической величины, поток масла в трубопроводе ламинарный, поэтому потери давления определяем по формуле:

, (74)

где d – внутренний диаметр трубопровода, d=4,6 мм;

L – длина трубопровода, мм; L=2 м.

 (МПа).

Наружный диаметр корпуса, как правило, выбирается конструктивно с учетом возможности расположения в его стенках проточек под уплотнения в соединении с крышкой и т.п.

Получаем, что наружный диаметр корпуса равен:


D=d+2δ, (75)

где d – внутренний диаметр корпуса, d=40 мм;

δ – толщина стенки гидроцилиндра, δ=4 мм.

D=40+2×4=48 (мм).

Принимаем D=48 мм.

Корпус гидроцилиндра изготавливается обычно из стальных труб бесшовных горячекатаных по ГОСТ 8734-75.

Выбор фильтра.

При соблюдении необходимых требований к чистоте гидросистемы удается повысить надежность гидроприводов и уменьшить эксплуатационные расходы. Повышение тонкости фильтрации рабочей жидкости в гидросистеме увеличивает ресурс насосов. Фильтрация обеспечивает наибольший эффект лишь при комплексном соблюдении требований по типам применяемых масел, правилам их хранения и транспортирования, качеству очистки и герметизации гидросистем, регламентам их эксплуатации. Фильтры обеспечивают в процессе эксплуатации гидропривода необходимую чистоту масла, работая в режимах полнопоточной или пропорциональной фильтрации во всасывающей, напорной или сливной линиях гидросистемы.

Приемные фильтры, работающие, как правило, в режиме полнопоточной фильтрации, предотвращают попадание в насос крупных частиц, в остальные элементы гидросистемы – более мелких частиц, являющихся продуктами разрушения частиц в насосе или других узлах гидропривода. По рекомендациям [18] выбираем фильтр приемный (сетчатый) по ОСТ 2С41-2-80, монтирующийся на нижнем конце всасывающей трубы насоса. Фильтры устанавливаем на всасывающей и сливной магистрали.



Информация о работе «Модернизация станка Nagel»
Раздел: Промышленность, производство
Количество знаков с пробелами: 120425
Количество таблиц: 10
Количество изображений: 11

0 комментариев


Наверх