Кинематический расчет

Модернизация станка Nagel
Анализ недостатков существующего оборудования для финишной обработки Современные методы повышения долговечности деталей Сущность холодной пластической деформации металлов Явления, происходящие в поверхностном слое при обработке ППД Шероховатость поверхности Напряжения Цель и задачи дипломного проекта Режимы обкатывания Подача ОБОСНОВАНИЕ ТЕХНИЧЕСКОЙ ХАРАКТЕРИСТИКИ СТАНКА Расчет зубчатой передачи Расчет критической частоты вращения эталон-вала Расчет ременной передачи Рычаг зажима шатунных шеек Обоснование самоустановки накатных роликовых головок Расчет накатной роликовой головки Кинематический расчет Синхронизация движений параллельно работающих гидроцилиндров Роликовые головки ЭКОНОМИЧЕСКАЯ ЭФФЕКТИВНОСТЬ ПРОЕКТА Расчет необходимого количества оборудования Расчет капитальных вложений Калькуляция себестоимости обработки детали на операции
120425
знаков
10
таблиц
11
изображений

4.3.3 Кинематический расчет

Допустимая скорость перемещения [28]:

, (93)

где Vдоп – скорость перемещения устройства в точке Б (ось заготовки), м/с;

S – линейный ход устройства, конструктивно принимается S=0,4 м;

∆ - погрешность позиционирования, ∆=0,1 мм;

m – масса перемещаемых частей, m=50 кг.

 (м/с).

Принимаем скорость движения заготовки Vз=0,03 м/с.

Угловая скорость устройства подъема:


, (94)

 (с-1)

Скорость устройства в т.А (движущая скорость на штоке гидроцилиндра):

Vд1=Vд2=w×r, (95)

Vд1=Vд2=0,174×0,115=0,02 (м/с).

4.3.4 Расчет силового гидроцилиндра

Исходные данные для расчета:

конструкция – двухсторонний, не симметричный;

тяговое усилие F=700 Н;

скорость прямого хода – V=1,8 м/мин = 0,03 м/с;

длина хода – 400 мм.

В качестве рабочей жидкости для гидропривода всей системы выбрано масло ИГП-18, кинематическая вязкость ν=18,5 сСт.

Выбор рабочего давления в штоковой полости гидроцилиндра.

Используя формулу (67), имеем:

,

где D – диаметр поршня цилиндра, мм; конструктивно по ГОСТ 6540-68 принимается стандартный D=40 мм;

d – диаметр штока, по ряду стандартных размеров принимаем d=20 мм.

 (МПа).

Усилие, развиваемое гидроцилиндром при обратном ходе по формуле (69):


,

 (Н).

Расход масла определяется по формуле (70):

,

 (м3/с) = 2,3 л/мин.

Используя формулу (71), определяем скорость штока при обратном ходе:

,

 (м/с) = 2,5 м/мин.

Выбор конструкции и типа уплотнений поршня и штока гидроцилиндра.

Конструкция и тип уплотнений поршня и штока гидроцилиндра принимается аналогично гидроцилиндру в рычаге коренных шеек - кольцо резиновое уплотнительное круглого сечения. Основные размеры колец по ГОСТ 6969-54:

- уплотнения поршня D=40 мм, d=36 мм;

- уплотнения штока D=26 мм, d=22 мм.

Расчет корпуса гидроцилиндра.

Внутренний диаметр расточки корпуса соответствует диаметру поршня и принимается dк=40 мм.

Используя формулу (72), имеем:


,

 (мм).

Для обеспечения жесткости гидроцилиндра принимаем толщину стенки δ=4 мм.

Расчет потерь давления в трубопроводе.

Безразмерное число Рейнольда по формуле (73):

,

где d – внутренний диаметр трубопровода, d=4,6 мм.

.

Поскольку Rе меньше критической величины [Rе]=2100, поток масла в трубопроводе ламинарный, поэтому потери давления определяем по формуле (74):

,

где d – внутренний диаметр трубопровода, d=4,6 мм;

L – длина трубопровода, мм; L=2 м.

 (МПа).

Так как потери слишком малы, далее их можно не учитывать.

Наружный диаметр корпуса считаем по формуле (75):


D=d+2δ,

где d – внутренний диаметр корпуса, d=40 мм;

δ – толщина стенки гидроцилиндра, δ=4 мм.

D=40+2×4=48 (мм).

Принимаем D=48 мм.

Корпус гидроцилиндра изготавливается из стальных труб бесшовных горячекатаных по ГОСТ 8734-75.

Для крепления гидроцилиндра из расчета на смятие определяем диаметр проушины по формуле (81):

,

где [δ] – допускаемое напряжение для опоры скольжения, [δ]≈20 МПа.

 (мм).

Принимаем диаметр проушины D=15 мм.

Т.к. ход поршня S>8D, требуется расчет гидроцилиндра на устойчивость.

Осевой момент инерции штока рассчитывается по формуле:

, (96)

где d – диаметр штока, d=22 мм.

 (мм4).

Критическая сила для потери штоком устойчивости:


, (97)

где Е – модуль Юнга I рода, Е=200000 МПа;

lш – длина штока, lш=400 мм

 (кН).

Условие устойчивости: Ркр≥F

Т.к. 46000 Н > 700 Н, условие устойчивости выполнено, значит шток устойчив.


Информация о работе «Модернизация станка Nagel»
Раздел: Промышленность, производство
Количество знаков с пробелами: 120425
Количество таблиц: 10
Количество изображений: 11

0 комментариев


Наверх