Разработка технологического процесса сборки изделия «трубка-фланец»

Повышение эффективности процессов обжима трубчатых заготовок давлением импульсного магнитного поля
СОВРЕМЕННОЕ СОСТОЯНИЕ ТЕОРИИ И ТЕХНОЛОГИИ МАГНИТНО-ИМПУЛЬСНОЙ ОБРАБОТКИ МЕТАЛЛОВ Математическое моделирование формоизменения заготовки в процессах МИОМ Математическое моделирование электромеханических процессов при магнитно-импульсной обработки металлов Математическая модель электродинамических процессов в одновитковом индукторе Построение численной модели для задачи электродинамики Многовитковый индуктор и установка Выводы по разделу Выбор геометрических размеров спирали индуктора-концентратора Выводы по разделу Температурные режимы функционирования спирали индуктора Температура спирали индуктора в момент окончания разряда магнитно-импульсной установки Математическая модель функционирования установки при неодновременном включении блоков конденсаторных батарей Влияние факторов на эффективность процесса обжима заготовки при неодновременном включении конденсаторных батарей Разработка технологического процесса сборки изделия «трубка-фланец» Отработаны технологические режимы сборки изготовлений «трубка-фланец» и «баллон», которые были внедрены в опытные производства ОАО «ТНИТИ»
132892
знака
115
таблиц
214
изображений

5.4 Разработка технологического процесса сборки изделия «трубка-фланец»

Изделие «Трубка-фланец» представляет собой сборочное соединение двух деталей: втулки (рис. 5.9), выполненной из алюминиевого сплава Д16Т и трубы из алюминиевого сплава АМГ2М наружным диаметром 25 мм, толщиной стенки 1,2 мм и длиной 60 мм (рис. 5.10).


Рис.5.9. Втулка

 

Рис.5.10. Труба

Традиционные методы сборки таких изделий сваркой, пайкой, свинчиванием по резьбовым поверхностям, закатка роликом и обжим на прессах очень трудоемки.

Применение импульсного магнитного поля в сборочных операциях позволяет при небольших конструктивных изменениях мест сопряжения деталей и узлов, не влияющих на их функционирование значительно снизить трудоемкость изготовления. Кроме того, в отличие от прессовых операций применение импульсного магнитного поля позволяет обеспечить максимальную соосность сопрягаемых изделий. Поэтому, для сборки данного изделия была выбрана операция магнитно-импульсной штамповки по схеме «обжим». При этом, для получения качественного соединения на втулке протачиваются две цилиндрические канавки шириной 2 мм и глубиной 1 мм, после чего производился обжим трубы в эти канавки (рис. 5.11).

Рис.5.11. Схема сборочного узла


Общий вид технологической наладки для сборки указанного изделия приведен на рис 5.12. При этом в качестве инструмента использовался индуктор-концентратор, выполненный из стали 65Г.

Рис. 5.12. Технологическая наладка для сборки изделия «Трубка-фланец»

Процесс был реализован в магнитно-импульсной установке энергоемкостью 60 кДж и собственной частотой разряда 55 кГц, при напряжении разряда кондентраторной батарей 11 кВ (расчетное значение напряжения разряда составило 10,6 кВ)

Готовые изделия представлены на рис. 5.13.


Рис. 5.13. Готовые изделия

 

5.5 Разработка технологического процесса сборки изделия «баллон»

Изделие «Баллон» (рис. 5.14) должно быть герметичным и выдерживать давление, равное 3 МПа. Для этого необходимо обеспечить герметичность соединения втулки (рис. 5.15) и корпуса (рис. 5.16). Для обеспечения герметичности на корпусе втулки выполнялась канавка, в которую закладывалась резиновая прокладка (рис. 5.17).


Рис. 5.14. Изделие «Баллон»: 1- втулка; 2- корпус

Рис. 5.15. Втулка

 

 Рис.5.16. Корпус

Рис.5.17. Прокладка


Сборка осуществляется обжимом корпуса в канавку, выполненную на втулке и при этом резиновая прокладка, деформируясь обеспечивает герметичность сборочного соединения. Для реализации технологического процесса была изготовлена опытная оснастка, включающая в себя индуктор для обжима (рис. 5.18). Сборка осуществлялась на магнитно-импульсной установке МИУ Т - 2М. Энергоемкость 24 кДж, собственной частотой разряда 16 кГц. Технологический процесс реализовался устойчиво при напряжении разряда 3,5 кВ, что соответствовало энергоемкости разряда 14 кДж, (расчетное значение энергоемкости составило 13,4 кДж)

Рис. 5.18. Технологическая наладка

1 – плита; 2 – прокладка; 3 – индуктор; 4 – плита; 5 – стержень;

6 – втулка; 8 – вывод

Технологические процессы изготовления «трубка-фланец» и «баллон» внедрены в опытные производства ОАО «ТНИТИ».

5.6 Выводы по разделу

1.         Разработана математическая модель функционирования системы «установка-индуктор-заготовка» в составе многоблочной магнитно-импульсной установки при неодновременном разряде конденсаторных батарей.

2.         Обоснован выбор временного интервала для включения очередного блока конденсаторных батарей при неодновременном разряде многоблочной магнитно-импульсной установки. Показано, что для достижения наилучшего результата необходимо производить очередное подключение конденсаторных батарей в момент времени, когда ускорение заготовки достигает максимального значения.

3.         Установлено, что эффективность обжима при неодновременном разряде конденсаторных батарей увеличивается, с уменьшением собственной частоты установки и с увеличением диаметра обрабатываемой заготовки, что может привести к увеличению степени деформации от 30 до 50% в зависимости от типа индуктора.

4.         Показано, что технически реально реализовать неодновременное включение конденсаторных батарей при обжиме заготовок одновитковым индуктором возможно в диапазоне собственных частот установок до 28 кГц, при обжиме заготовок четырехвитковым цилиндрическим индуктором и индуктором концентратором этот диапазон возможно расширить до 70кГц.


Информация о работе «Повышение эффективности процессов обжима трубчатых заготовок давлением импульсного магнитного поля»
Раздел: Промышленность, производство
Количество знаков с пробелами: 132892
Количество таблиц: 115
Количество изображений: 214

Похожие работы

Скачать
305550
1
104

... - дальнейшее развитие, совершенствование и разработка новых технологических методов обработки заготовок деталей машин, применение новых конструкционных материалов и повышение качества обработки деталей машин. Наряду с обработкой резанием применяют методы обработки пластическим деформированием, с использованием химической, электрической, световой, лучевой и других видов энергии. Классификация ...

0 комментариев


Наверх