2.5.2 Многовитковый индуктор и установка
При минимизации функционала невязки (2.29) получили систему уравнений, последующая дискретизация и учет изменения напряжения на батарее конденсаторов приводит к системе линейных дифференциальных уравнений первого порядка с постоянными коэффициентами:
(2.38)
где
- ток в k-м контуре индуктора; - сопротивление в j-м контуре; - напряжение в j-м контуре; - текущее напряжение на конденсаторной батарее; N - количество витков; n - номер витка,; k – номер контура; М – число контуров принадлежащих индуктору и заготовке; H - число контуров, принадлежащих индуктору.
В системе уравнений (2.38) первое уравнение отражает закон электромагнитной индукции с учетом множителей Лагранжа, второе – закон сохранение тока, а третье уравнение - закон изменения напряжения на батарее.
Для решения системы уравнения (2.38) использовался метод Рунге-Кутта 4-го порядка (2.36).
2.5.3 Система «индуктор-заготовка-установка»
Система «установка - индуктор – заготовка» описывалась двухконтурной схемой замещения (рис. 2.3).
Рис. 2.3. Упрощенная электрическая схема технологической системы МИОМ
Буквами «И» и «З» обозначены соответственно контуры индуктора и заготовки. С - емкость батареи конденсаторов, Rи, Lи, Rз, Lз – сопротивления и собственные индуктивности индуктора и заготовки, Lиз- взаимная индуктивность индуктора и заготовки.
Для учета омического сопротивления установки и ее индуктивности в первое уравнение системы (2.38) введем дополнительные слагаемые, отражающие падение напряжения на токоподводе и дополнительную ЭДС индукции:
(2.39)
где Rуст- сопротивление установки, Lуст- индуктивность установки.
2.5.4 Вычисления сил и температур
На основе известных токов вычислялись силы и температуры в каждой точке сечения индуктора и заготовки.
Выражение для силы взаимодействия между двумя элементами i и j после дискретизации (2.30) имет вид:
.
Тогда выражение для суммарной силы, действующей на элемент, выглядит следующим образом:
.
а выражение для компонентов плотности силы выглядит следующим образом:
, (2.40)
где -площадь i-го элемента.
Ниже приведены выражения для радиальной и осевой компонент силы, с которой элемент действует сам на себя:
Считалось, что, так как время процесса мало, теплопередача не происходит. Тогда формулы для скорости нагрева и температуры элемента выглядят следующим образом:
; .
2.5.5 Численное моделирование механических процессов в заготовке
Для решения задачи упруго-пластичности применяется метод упругих решений, заключающийся в сведении нелинейной задачи пластичности к сходящейся последовательности задач упругости.
Меридиональное сечение заготовки разбивалось на треугольные конечные элементы, причем сетки подзадач электродинамики и механики совпадали (рис.2.2). После дискретизации получили систему дифференциальных уравнений, описывающую движение узлов одного элемента, когда он находится в упругом состоянии
, (2.41)
где M- матрица масс, K-матрица жесткости задачи упругости; ; - радиальная координата центра масс элемента; F- локальный вектор сил, действующих на элемент, ‑вектор перемещений, B – матрица производных функций формы, D- матрица упругих постоянных.
При построении численной модели использовались основные соотношения теории пластического течения.
1) приращение деформации на шаге по времени складывается из приращения упругой и пластической деформации:
; | (2.42) |
2) приращение пластической деформации может быть получено по формуле для ассоциированного закона пластического течения:
(2.43) |
В данной задаче в качестве условия текучести принят критерий Мизеса
где ,
где - напряжения в элементе, - предел текучести, Аp - работа пластического формоизменения.
Закон Гука в дискретной форме
(2.44)
после выражения упругих деформаций из (2.42) как разности полных и пластических деформаций можно записать следующим образом
. (2.45)
Подставляя данное выражение в соотношения МКЭ для упругой задачи, получим
(2.46)
Учитывая, что и , упростим выражение (2.39)
, (2.47)
где - приведенная сила, связанная с пластическим формоизменением.
Интегрирование системы дифференциальных уравнений (2.47) проводилось методом дискретизации по времени
(2.48)
где , - значения перемещения, скорости в начале шага; a - ускорения на текущем шаге [42].
После подстановки выражения (2.48) в систему дифференциальных уравнений (2.47) движения получили:
. (2.49)
Выражение (2.49) представляет собой систему линейных алгебраических уравнений относительно вектора ускорений. Подставив найденный вектор ускорений на данном шаге в (2.48), получим перемещение и скорость в конце данного шага интегрирования.
Для приращения приведенной силы была получена формула на основе теории пластического течения. Подставив (2.43) в выражение приведенной силы пластического формоизменения, получим
, (2.50)
где - вектор частных производных от уравнения поверхности текучести.
Коэффициент вычислялся по формуле
, (2.51)
где - вектор приращений узловых перемещений на данном шаге, - касательный модуль пластичности.
Соотношения (2.51) можно получить следующим образом. Найдем полное приращение выражения , используя дифференциал
. (2.52)
Когда материал находится в пластическом состоянии выполняется условие текучести, а соответственно выражение (2.52) должно тождественно равняться нулю.
(2.53)
С учетом того, что - приращение работы пластической деформации, преобразуем равенство (2.53)
. (2.54)
Подставим в (2.54) выражение пластических деформаций через ассоциированный закон течения
. (2.55)
Запишем (2.55) в приращениях
(2.56)
и подставим выражение приращения пластической деформации через ассоциированный закон течения
.(2.57)
Подставляя (2.57) в (2.55) и проводя ряд преобразований, получаем (2.44).
Для численного решения задачи необходимо применять итерационную процедуру. Ниже приведен ее алгоритм
1) вычислить вектор внешних сил, используя решение задачи электродинамики;
2) взять вектор приведенной силы пластического формоизменения (2.50) с предыдущего шага и вычислить приращение вектора узловых перемещений по формулам (2.48) и (2.49);
3) используя значения приращения вектора узловых перемещений, вычислить по формуле (2.51);
4) откорректировать вектор приведенной силы пластического формоизменения, используя новое значение ;
5) вычислить уточненное приращение вектора узловых перемещений по формулам (2.48) и (2.49);
6) оценить погрешность, сравнив приращение перемещений на данном шаге с полученными ранее на предыдущей итерации или (для первой итерации) на шаге 2. Если погрешность превышает заданное значение, перейти к шагу 3.
7) Откорректировать значение предела текучести с учетом упрочнения.
8) Если не достигнут конец временного отрезка решения задачи, сделать новый шаг по времени и перейти к шагу 1.
... - дальнейшее развитие, совершенствование и разработка новых технологических методов обработки заготовок деталей машин, применение новых конструкционных материалов и повышение качества обработки деталей машин. Наряду с обработкой резанием применяют методы обработки пластическим деформированием, с использованием химической, электрической, световой, лучевой и других видов энергии. Классификация ...
0 комментариев