Отработаны технологические режимы сборки изготовлений «трубка-фланец» и «баллон», которые были внедрены в опытные производства ОАО «ТНИТИ»

Повышение эффективности процессов обжима трубчатых заготовок давлением импульсного магнитного поля
СОВРЕМЕННОЕ СОСТОЯНИЕ ТЕОРИИ И ТЕХНОЛОГИИ МАГНИТНО-ИМПУЛЬСНОЙ ОБРАБОТКИ МЕТАЛЛОВ Математическое моделирование формоизменения заготовки в процессах МИОМ Математическое моделирование электромеханических процессов при магнитно-импульсной обработки металлов Математическая модель электродинамических процессов в одновитковом индукторе Построение численной модели для задачи электродинамики Многовитковый индуктор и установка Выводы по разделу Выбор геометрических размеров спирали индуктора-концентратора Выводы по разделу Температурные режимы функционирования спирали индуктора Температура спирали индуктора в момент окончания разряда магнитно-импульсной установки Математическая модель функционирования установки при неодновременном включении блоков конденсаторных батарей Влияние факторов на эффективность процесса обжима заготовки при неодновременном включении конденсаторных батарей Разработка технологического процесса сборки изделия «трубка-фланец» Отработаны технологические режимы сборки изготовлений «трубка-фланец» и «баллон», которые были внедрены в опытные производства ОАО «ТНИТИ»
132892
знака
115
таблиц
214
изображений

5.         Отработаны технологические режимы сборки изготовлений «трубка-фланец» и «баллон», которые были внедрены в опытные производства ОАО «ТНИТИ».


ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ

В диссертационной работе решена актуальная научно-техническая задача – снижение энергоемкости операций магнитно-импульсной штамповки трубчатых заготовок по схеме обжим путем научно обоснованного выбора геометрии спирали индуктора-концентратора и управления процессом разряда магнитно-импульсной установки.

Теоретические и экспериментальные исследования позволили получить следующие результаты:

1). Усовершенствована математическая модель электродинамических процессов, протекающих в системе «установка – индуктор - заготовка» в результате учета сопротивления токоподводов и собственной индуктивности установки, а также описания формоизменения заготовки на базе теории пластического течения Прандтля и Рейса.

2). Показано, что наиболее эффективным индуктором для обжима является индуктор-концентратор, использование которого позволяет увеличить деформацию значительно увеличить деформацию заготовки по сравнению с одновитковым и четырехвитквым цилиндрическим индуктором.

3). Разработана методика проектирования геометрии спирали индуктора–концентратора. Показано, что геометрия спирали существенно зависит от диаметра обрабатываемой заготовки.

4). Показано, что использование индуктора-концентратора снижает энергоемкость процесса обжима в 1,3 - 2 раза по сравнению с четырехвитковым цилиндрическим индуктором и в 2 – 10 раз по сравнению с одновитковым индуктором в зависимости от материала заготовки, параметров магнитно-импульсной установки и геометрических размеров обрабатываемой заготовки.

5). Установлено, что наименьшее значение пондеромоторных сил при обжиме как стальной, так и алюминиевой заготовок реализуется при использовании индуктора-концентратора. Так, при обжиме стальной и алюминиевой заготовок максимальная радиальная пондеромоторная сила на четырехвитковом цилиндрическом индукторе на 15 – 20 % и на одновитковом индукторе на 60 – 70 % выше по сравнению с индуктором-концентратором.

6). Наибольшие значения температур при обжиме как стальной, так и алюминиевой заготовок имеют место в индукторе-концентраторе. Так для индуктора-концентратора температура в 1,5 - 1,8 раза выше, чем температура спирали в одновитковом и четырехвитковом цилиндрическом индукторах. При обжиме алюминиевой заготовки температуры, возникающие в спирали индуктора, от 2 до 5 раз ниже, чем при обжиме стальной заготовки, независимо от формы спирали индуктора.

7). Разработана математическая модель функционирования системы «установка – индуктор - заготовка» в составе многоблочной магнитно-импульсной установки при неодновременном разряде конденсаторных батарей.

8). Показано, что для достижения наилучшего результата необходимо производить очередное подключение конденсаторных батарей в момент, когда ускорение заготовки достигает максимального значения, что может привести к увеличению степени деформации заготовки до 50%.

9). Отработаны технологические режимы сборки изделий «трубка-фланец» и «баллон», которые были внедрены в опытное производство ОАО «ТНИТИ».


СПИСОК ЛИТЕРАТУРЫ

1.    А.с. №1628337 СССР МКИ В21Д26/14. Устройство для формообразования поперечно-гофрированных оболочек/ В.Н. Самохвалов (СССР). - №4739425; Заявл. 21.09.89.- д.с.п.

2.    А.с. №1570129 СССР МКИ В21Д26/14. Способ магнитно-импульсной обработки материалов / В.А. Глущенков, В.Н. Самохвалов,Р.Ю. Юсупов (СССР). - №4333054; Заявл. 24.11.87.- д.с.п.

3.    А.с. №1651428 СССР МКИ В21Д26/14. Устройство для магнитно-импульсной обработки полых заготовок / В.Н. Самохвалов, Р.Ю. Юсупов.В.П. Самохвалов (СССР). - №4766737; Заявл. 08.12.89.-д.с.п.

4.    Арсов Я.Б., Новик Ф.С. Оптимизация процессов технологии металлов методами планирования экспериментов. – М.: Машиностроение; София: Техника, 1980г. – 304с.

5.    Баженов В.Г., Михайлов Г.С. Численный анализ больших динамических деформаций оболочек вращения при осесимметричном неизотермическом нагружении // Ученые записки ГТУ / Горький, 1970. – Вып. 122. – С. 69-70.

6.    Баженов В.Г., Ломунов В.К., Петров М.В. Упругопластическое деформирование цилиндрических оболочек при магнитно-импульсном нагружении // Прикладные проблемы прочности и пластичности. Всесоюз. межвуз. сб. / Горький: Горьк. ун-т, 1979. – С. 73-78.

7.    Батыгин Ю.В., Лавинский В.И. Магнитно-импульсная обработка металлов. – Харьков. МОСТ – Торнадо, 2002. – 228с.

8.    Бондалетов В.Н., Чернов Е.И. Определение параметров схем замещения при разряде емкостного накопителя на плоскую спиральную катушку, помещенную над проводящим полупространством // Высоковольтная импульсная техника (Чебоксары). - Вып. 2, 1975.- С. 14-20.

9.    Влияние способа формоизменение зигов / Н.В. Максимов, И.А. Мищенко, Н.А. Нога и др. // Вестник Харьковского политехнического института / Харьков, 1969. - № 35. – С. 66-68.

10.  Высокоскоростное деформирование металлов: Перев. англ. – М.: Машиностроение, 1966. – 175с.

11.  Глущенков В.А., Стукалов С.А. Особенности магнитно-импульсной штамповки тонкостенных трубчатых деталей сложной формы // Кузнечно-штамповочное производство. – 1966. - № 10. – С. 18-23.

12.  Гончаренко И.Е. Метод конечных элементов в исследовании процессов осесимметричного деформирования конструкций при ударных воздействиях // Динамика пространственных конструкций .- Киев: 1978.- С.17-20.

13.  Гофрические трубы большого диаметра магнитно-импульсным способом / Ю.А. Барсук, А.И. Квитлицкий, О.Т. Лагутин и др. // Обработка металлов давлением в машиностроении / Харьков, 1974. – Вып. 10. – С. 45-51.

14.  Зенкевич О. Метод конечных элементов в технике .- М.: Мир, 1975.- 541с.

15.  Зенкевич О., Чанг И. Метод конечных элементов в теории сооружений и в механике сплошных сред. Пер. с англ. О.П. Троицкого и С.В. Соловьева. Под ред. Ю.К. Зарецкого .- М.: Недра, 1974.- 238 с.

16.  Иванов Е.Г. Изгибное деформирование трубчатых заготовок импульсным магнитным полем // Импульсное нагружение конструкций / Чебоксары, 1974. – Вып. 5. – С. 70-86.

17.  Иванов Е.Г. Изгибное деформирование трубчатых заготовок импульсным магнитным полем // Импульсное нагружение конструкций / Чебоксары, 1978. – Вып. 9. – С. 70-86.

18.  Иванов Е.Г. Некоторые вопросы осесимметричного деформирования импульсным магнитным полем // Импульсное нагружение конструкций. - Чебоксары, 1974.-Вып.5.-С.70-86.

19.  Иванов Е.Г. Основы теории и расчета процессов формообразования деталей и узлов из трубчатых заготовок магнитно-импульсным методом: Дис. … доктора техн. наук: 05.03.05/Е.Г. Иванов.- Защищена xx.xx.xx; Утв. yy.yy.yy; .- Москва, 1984.-478 с.: ил.- Библиогр.: С. 390-477.

20.  Иванов Е.Г. Раздача конической заготовки импульсным магнитным полем // Импульсное нагружение конструкций / Чебоксары, 1972. – Вып. 3. – С. 13-18.

21.  Иванов Е.Г., Попов Ю.А. Давление импульсного магнитного поля на трубчатую заготовку // Авиационная промышленность, № 10, 1980.- С. 31-32.

22.  Иллививицкий Г.И. Графоаналитический метод расчета максимальных давлений при магнитной штамповке // Авиационная промышленность. – 1973. - № 5. – С. 45.

23.  Исарович Г.З., Гончаренко И.Е. Исследование осесимметричной магнитно-импульсной штамповки методом конечных элементов // Импульсные методы обработки материалов: Тез. докл. Всесоюзной конференции / Минск, 1978. – С. 83.

24.  Калантаров П.Л., Цейтлин Л.А. Расчет индуктивностей: Справочная книга .- 3-е изд., перераб. и доп.- Л.: Энергоатомиздат, 1986.- 488 с.

25.  Кан Б.И., Сегаль А.М. Определение минимальной напряженности магнитного поля, необходимой для пластического течения материала в случае раздачи цилиндрической и конической оболочек // Импульсное нагружение конструкций / Чебоксары, 1972. – Вып. 3. – С. 19-28.

26.  Карпов В.В., Назаров Н.С., Роман О.В. Деформирование трубчатых заготовок энергией импульсного магнитного поля // Пластичность и обработка металлов давлением. - Минск: Наука и техника, 1974.- С. 208-212.

27.  Коротких Ю.Г. Численный метод исследования поведения тел при импульсных воздействиях // Ученые записки ГТУ / Горький, 1970. – Вып. 122. – С. 54-68.

28.  Кухарь В.Д. Теория процессов штамповки анизотропных и неоднородных полых цилиндрических заготовок импульсным магнитным полем: Дис. … доктора техн. наук: 05.03.05/В.Д. Кухарь.- Защищена xx.xx.xx; Утв. yy.yy.yy; .- Тула, 1989.-365 с.: ил.- Библиогр.: С. 323-351.

29.  Кухарь В.Д., Орлов А.А., Пасько А.Н., Проскуряков Н.Е. Конечно-элементная модель распределения тока в индукторе для магнитно-импульсной штамповки // Исслед. в обл. теории, технол. и оборуд. штамп. пр-ва. - Орел: ОрелГТУ, Тула: ТулГУ, 1998.- С. 105-110.

30.  Лагутин О.Т. Основные закономерности процесса раздачи на конце трубчатых тонкостенных заготовок импульсным магнитным полем // Вестник Харьковского политехнического института / Харьков, 1971. - № 55. – С. 52-57.

31.  Ландау Л.Д., Лифшиц Е.М. Теоретическая физика: В 10-ти т. Учеб. пособие для ун-тов .- 3-е изд., испр.- М.: Наука,1992.- Т.8.: Электродинамика сплошных сред .- 664 с.

32.  Легчилин А.И., Буравлев Л.Т. О расчете энергии при отбортовке отверстий импульсным магнитным полем // Труды МВТУ им. Н.Э. Баумана. – 1973. – № 167. – С. 63-69.

33.  Ли Кобаяши. Новые решения задач о деформации жесткопластического материала матричным методом // Конструирование и технология машиностроения. Труды американского общества инженеров-механиков. – 1973. – Т. 95. – Сер. В. - № 3. – С. 204-212.

34.  Магнитно-импульсная обработка металлов / Изд. 3-е доп.- Воронеж: ЭНИКМАШ, 1976.- 182 с.

35.  Макаров Э.С., Холодков Ю.В., Щелобаев С.И. Конечно-элементный подход к расчету процессов магнитно-импульсной обработки металлов. – Тула, 1983. – 68с. – деп. в ВИНИТИ 25.04.83.

36.  Михайлов В.М. Влияние перемещения деформируемой детали на амплитуду тока в рабочей зоне индуктора // Харьков: ХПИ, № 94, 1974.- С. 37-48.

37.  Михайлов В.М. О распределении усилий в стенке проводящей трубы в нестационарном магнитном поле // Теоретическая электромеханика (Львов), вып. 12, 1971.- С. 124-128.

38.  Орлов А.А. Математическое моделирование электромеханических процессов при магнитно-импульсной обработке металлов: Дис. … канд. физ.-мат. наук: 05.13.18/ А.А. Орлов.- Защищена xx.xx.xx; Утв. yy.yy.yy; .- Тула, 2002.-90 с.: ил.- Библиогр.: С. 83-90.

39.  Подольцев А.Д. Численный расчет импульсных электромагнитных полей в неподвижных и движущихся проводящих средах с помощью пакета программ ИКДД // Киев: Препринт АН УССР, Ин-т электродинамики, № 606, 1989.- 32 с.

40.  Попов Ю.А. К расчету давления магнитного поля и его импульса при разряде батареи конденсаторов на плоскую систему индуктор-заготовка // Тезисы докладов Всесоюзной научно-технической конференции по магнитно-импульсной обработке металлов / Харьков: ХПИ, 1966.- С. 62-63.

41.  Попов Ю.А. Некоторые особенности расчета процессов, использующих силовое воздействие импульсного магнитного поля // Электрофизические процессы при импульсном разряде (Чебоксары). - Вып.4, 1977.- С. 84-104.

42.  Применение теории пластического течения для моделирования поведения заготовки для МИОМ / Орлов. А.А., Киреева А.Е. - Известия ТулГУ «Актуальные задачи механики» - Изд-во ТулГУ, 2005. - Вып.2. –С224-228.

43.  Римм Э. Р., большаков Ю.А. Деформирование конической заготовки импульсной нагрузкой // Научные труды Пермского политехнического института / Пермь, 1977.- № 195. – С. 115-119.

44.  Римм Э.Р., Нихамкин М.М., Леонтьева Н.В. Исследование некоторых процессов магнитно-импульсной штамповки // Обработка металлов давлением Свердловск: УГТУ, Вып. 3, 1976.- С. 126-130.

45.  Самохвалов В.П., Самохвалов В.Н. Управление процессом деформирования заготовок вариационным воздействием импульсных магнитных полей // Новые материалы и технологии. Интенсивные технологии в производстве летательных аппаратов. - М.: МГАТУ, 1994. - С.41.

46.  Самохвалов В.Н. Разработка теории и практических основ процессов штамповки тонкостенных деталей давлением импульсных магнитных полей без применения жесткого формообразующего инструмента: Дис. … доктора техн. наук: 05.03.05/В.Н. Самохвалов.- Защищена xx.xx.xx; Утв. yy.yy.yy; .- Москва, 1996.-285 с.: ил.- Библиогр.: С. 280-284.

47.  Справочник по магнитно-импульсной обработке металлов / И.В. Белый, С.М. Фертик, Л.Т. Хименко .- Харьков; Вища школа, 1977. - 168 с.

48.  Талалаев А.К. Индукторы и установки для магнитно-импульсной обработки металлов. - М.: Информтехника, 1992. - 143 с.

49.  Теория пластических деформаций металлов / Е.П. Унксов, У. Джонсон, В.Л. Колмогоров и др. Под ред. Е.П. Унксова, А.Г. Овчиникова. – М.: Машиностроение, 1983. – 598с.

50.  Толоконников Л.А. Механика деформируемого твердого тела: Учеб. пособие для втузов .- М.: Высш. школа, 1979.- 318 с.

51.  Шнеерсон Г.А. Поля и переходные процессы в аппаратуре сверхсильных токов. - Л.: Энергоиздат, 1981. - 200 с.

52.  Шнеерсон Г.А. Применение метода сшивания для расчета магнитных полей идеальных проводников, разделенных малым зазором // Методы и средства решения краевых задач. - Л.: 1981.- С. 76-87.

53.  Щеглов Б.А. Динамическое формообразование тонколистовых металлов // Исследование процессов пластического формоизменения металлов / М.: МАИ, 1974.- С. 33-34.

54.  Яковлев С.П., Кухарь В.Д., Маленичев Е.С. Продольная рифтовка тонкостенной цилиндрической трубы // Известия вуза. Машиностроение. – 1983. - № 3. – С. 145-148.

55.  Яковлев С.П., Кухарь В.Д., Талалаев А.К. Раздача тонкостенной цилиндрической анизотропной трубы в кольцевую щель // Известия вузов. Машиностроение. – 1978. - № 10. – С. 128-132.

56.  Dietz H., Lippman H., Schenk H. - Theorie des Magneform-Verfahrens // Erreichbarer Druck .- ETZ Ausg. A. Bd. 89, H. 12, 1964.- S.273-278.

57.  Drastik F., Vocol M., Smrcka I. - Moznasti elektromagnetickovo tvareni kovu // Strojirenstvi, 1965, № 3, s. 222-225.

58.  Elektrotechnik Zeitschrift, Bd. 16, № 18, s. 529-585, 1964.

59.  Furth H.P., Waniek R.W.- New Ideas on magnetic Forming. - Metalworking Production, v. 106, № 18, (50), 1962.

60.  Jablonski J., Winkler R. Analysis of the electromagnetic Forming Process // International Journal mechanic Sci. - 1978. - vol. 20, p. 315-325.

61.  Magnetic Forming comes to Britain.- Metalworking Production, v. 107, 1963.- P. 69-70.


Информация о работе «Повышение эффективности процессов обжима трубчатых заготовок давлением импульсного магнитного поля»
Раздел: Промышленность, производство
Количество знаков с пробелами: 132892
Количество таблиц: 115
Количество изображений: 214

Похожие работы

Скачать
305550
1
104

... - дальнейшее развитие, совершенствование и разработка новых технологических методов обработки заготовок деталей машин, применение новых конструкционных материалов и повышение качества обработки деталей машин. Наряду с обработкой резанием применяют методы обработки пластическим деформированием, с использованием химической, электрической, световой, лучевой и других видов энергии. Классификация ...

0 комментариев


Наверх