Оценка естественной вентиляции лаборатории

Исследования свойств штамповой стали после термической обработки
Влияние легирующих элементов на структуру и свойства штамповых сталей Термическая обработка штамповых сталей для горячего деформирования Влияние термической обработки на свойства штамповых сталей Патентный поиск Методы эксперимента Методика нанесения покрытий Экспериментальная часть Влияние температуры отпуска на твердость стали 4Х5МФ1С Влияние режима термической обработки на карбидную фазу Определение объемной доли карбидных включений Строение карбидных фаз Влияние температуры закалки на аустенитное зерно Влияние температуры отпуска на износостойкость Экономика и организация производства Расчет основных параметров сетевого графика Оптимизация сетевого графика Затраты на электроэнергию Затраты на воду для технических нужд Оценка экономической эффективности результатов исследования Оценка естественной вентиляции лаборатории
140975
знаков
39
таблиц
36
изображений

7.2 Оценка естественной вентиляции лаборатории

Принцип действия общеобменной вентиляции заключается в том, что с помощью вентиляционного воздуха выделяющиеся в помещение вредности удаляются наружу. В соответствии с этим принципом количество подаваемого в помещения воздуха (расчетный воздухообмен) должно обеспечивать разбавление выделяющихся вредностей до допустимых концентраций, а также поддержание допустимых метеорологических параметров воздушной среды на рабочих местах. Если характер и количество вредностей не поддаются учету, то вентиляционный воздухообмен определяют по кратности воздухообмена, представляющей собой отношение объема вентиляционного воздуха к внутреннему объему помещения. [19]


L = V × Kр, (26)

где L – необходимый воздухообмен, м3/ч;

V – объем помещения, V = 76,8 м3;

Кр – кратность воздухообмена, Кр = 3,5 ч-1. [20]

L = 76,8 × 3,5 = 268,8 м3/ч.

7.3 Оценка искусственного освещения в лаборатории

Искусственное освещение предусматривается в помещениях, в которых недостаточно естественного света. В исследовательской лаборатории искусственное освещение осуществляется с помощью лампы накаливания общего назначения с нормальной световой отдачей (по ГОСТ 2239–60) типа НБ 220-75 мощностью 75 кВТ.

Для оценки искусственного освещения при известном типе, расположении и мощности светильника определим освещенность точек горизонтальной рабочей поверхности Е.

(27)

где Iα – сила света, кд;

α – угол падения света, т.е. угол между лучом и нормалью к освещаемой поверхности α = 23о;

h – абсолютная величина нормали, т.е. расстояние от источника света до уровня расположения поверхности, h = 2,4 м.

Для ламп накаливания


(28)

где F – световой поток, F = 840 лм;

ω – телесный угол, в котором распределено излучение, ω = 4π.

Фактическая величина освещенности равна 9,1 лк, что меньше нормируемой (200 лк [1]), т.е. качество освещения данным источником света не удовлетворяет требуемым условиям. Чтобы нормализовать освещенность необходима установка дополнительных источников света.

Количество ламп накаливания, необходимое для создания освещенности 200 лк определим по формуле

(29)

где Е – минимальная освещенность, Е = 200 лк;

S – площадь помещения, S = 24 м2;

к – коэффициент запаса, к = 1,3;

F- световой поток от одной лампы, F = 840 лм;

η – коэффициент использования светового потока, η = 58%.


Принимаем количество ламп накаливания для создания требуемой освещенности – 13 единиц.


Библиографический список

 

1.  Геллер, Ю.А. Инструментальные стали / Ю.А. Геллер. – М.: Металлургия, 1968. – 568 с.

2. Геллер, Ю.А., Рахштадт, А.Г. Материаловедение / Ю.А. Геллер, А.Г. Рахштадт. – М.: Металлургия, 1975. – 448 с.

3. Гуляев, А.П. Металловедение: учебник для вузов / А.П. Гуляев. – М.: Металлургия, 1986. – 542 с.

4. Позняк, Л.А., Скрынченко, С.И. Штамповые стали / Л.А. Позняк, С. И. Скрынченко. – М.: Металлургия, 1980. – 244 с.

5. Артингер, И. Инструментальные стали и их термическая обработка / И. Артингер. – М.: Металлургия, 1982. – 312 с.

6. Металловедение и термическая обработка стали: справочник. Т. 1. Методы испытаний и исследования / под ред. М.Л. Бернштейна, А.Г. Рахштадта. – М.: Металлургия, 1983. – 367 с.

7. Торопцева, Е.Л. Методические указания по курсу «Теория термической обработки металлов» / Е.Л.Торопцева, В.И. Захаренкова. – Липецк: ЛГТУ, 2003. – 32 с.

8. Гвоздев, А.Г. Лабораторный практикум по материаловедению: учеб. пособие / А.Г. Гвоздев. – Липецк: ЛГТУ, 2002. – 82 с.

9. ГОСТ 5950–2000. Прутки, полосы и мотки из инструментальной легированной стали.

10. Шиммель, Г. Методика электронной микроскопии / Г. Шиммель. – М.: Металлургия, 1991. – 295 с.

11. Лившиц, Б.Г. Металлография: учеб. пособие для вузов / Б.Г. Лившиц. – М.: Металлургия, 1990. – 236 с.

12. ГОСТ 9013-59. Металлы. Метод измерения твердости по Роквеллу.

13. ГОСТ 1763–68. Сталь. Методы определения глубины обезуглероженного слоя.

14. ГОСТ 5639–82. Стали и сплавы. Методы выявления и определения величины зерна.

15. Brenscheidt, F. The influence of ion energy on the wear behaviour of titanium-implanted silicon nitride ceramics / F. Brenscheidt, W. Fischer, W. Matz, E. Wieser // Surface and coatings technology. – 1996. – №83. – с. 317 – 321.

16. Манюгин, А.П. Методические указания к выполнению экономической и организационной части дипломной работы исследовательского характера / А.П. Манюгин, О.В.Лосева. – Липецк: ЛГТУ, 2002. – 33 с.

17. Богомолова Е.В. Методические указания к выполнению экономической и организационной части дипломной работы исследовательского характера / Е.В. Богомолова, Л.К. Михайловская. – Липецк: ЛГТУ, 2000. – 12 с.

18. Злобинский, Б.М. Охрана труда в металлургии / Б.М. Злобинский. – М.: Металлургия, 1975. – 536 с.

19. Гусев, В.М. Теплотехника, отопление, вентиляция и кондиционирование воздуха: учебник для вузов / В.М. Гусев, Н.И. Ковалев, В.П. Попов, В.А. Порошков. – Л.: Стройиздат, 1981. – 343 с.

20. Ананьев, В.А. Системы вентиляции и кондиционирования. Теория и практика / Ананьев В.А., Балуева Л.Н. – Евроклимат, 2003. – 416 с.


Информация о работе «Исследования свойств штамповой стали после термической обработки»
Раздел: Промышленность, производство
Количество знаков с пробелами: 140975
Количество таблиц: 39
Количество изображений: 36

Похожие работы

Скачать
133990
34
13

... этапе является более дешевым оборудованием, чем молот. 3. При внедрении и реализации нового технологического процесса штамповки детали типа "фланец" их хромоникелевого жаропрочного сплава уменьшается количество технологических операций, уменьшается суммарная трудоемкость процесса. 4. В рамках разработки нового технологического процесса проведены основные технологические расчеты: определена ...

Скачать
65021
2
0

... относят к определенной группе отраслей промышленности – твердые безвольфрамовые сплавы – один из продуктов перерабатывающей промышленности. Потребительские свойства безвольфрамовых твердых сплавов Наиболее важными свойствами металлокерамических твердых сплавов являются: твердость, вязкость, стойкость на истирание, удельный вес, теплопроводность и красностойкость. Все эти свойства тесно ...

Скачать
113333
0
2

... влияющие на точность и воспроизводимость результатов. Области практического применения лазерной размерной обработки ограничены преимущественно получением отверстий не выше 3-го класса точности. Тем не менее, лазерная технология получения отверстий внедрена на ряде предприятий, где с ее помощью получают черновые отверстия (на проблемах внедрения этих процессов мы остановимся позднее). Относительно ...

Скачать
77363
0
0

... факторы, т.е. изменяющаяся температура и давление, для сплавов принята несколько иная форма зависимости с = к -ф + 1 при условии постоянства давления. С учетом правила фаз, как объясняющего процесс кристаллизации, кристаллизацию металлов, которая протекает при постоянной температуре можно объяснить следующим образом: С12 =1-1+1=1С2=1-2+1=0 С2`-3=1-1+1=1 Для двухкомпонентных систем, которые ...

0 комментариев


Наверх