Патентный поиск

Исследования свойств штамповой стали после термической обработки
Влияние легирующих элементов на структуру и свойства штамповых сталей Термическая обработка штамповых сталей для горячего деформирования Влияние термической обработки на свойства штамповых сталей Патентный поиск Методы эксперимента Методика нанесения покрытий Экспериментальная часть Влияние температуры отпуска на твердость стали 4Х5МФ1С Влияние режима термической обработки на карбидную фазу Определение объемной доли карбидных включений Строение карбидных фаз Влияние температуры закалки на аустенитное зерно Влияние температуры отпуска на износостойкость Экономика и организация производства Расчет основных параметров сетевого графика Оптимизация сетевого графика Затраты на электроэнергию Затраты на воду для технических нужд Оценка экономической эффективности результатов исследования Оценка естественной вентиляции лаборатории
140975
знаков
39
таблиц
36
изображений

1.2 Патентный поиск

Создание высокопроизводительных инструментов связано, в первую очередь, с проблемой получения таких материалов, которые могли бы противостоять тяжелым условиям работы. Поэтому вопросам, связанным с разработкой новых марок сталей, уделяется большое внимание.

Таблица 3. Сведения о разработанных патентах

Номер патента, заявки и дата публикации Авторы Название патента и краткое описание изобретения
1 2 3

50949

2001096519

15.11.2002

Тюрин М.Ф., Белик О.В., Овчинников В.О., Царицин Е.А. Штамповая сталь. Предложена сталь, отличающаяся дополнительным содержанием V и Ca при соотношении компонентов (в %): С 0,45–0,65; Si 0,9–1,7; Mn 1,3–1,6; Cr 1,5–2,5; V 0,3–0,8; W 0,2–0,5; Ca 0,001–0,005; Mo 0,5–0,8; Al 0,04–0,1. Результатом изобретения является улучшение механических свойств, в том числе и износостойкости стали.

57093

200010058

16.06.2003

Терехов В.М., Артамонов Ю.В. Инструментальная сталь. Для режущего инструмента предлагают сталь, которая отличается от известного дополнительным содержанием бора при следующем соотношении компонентов (в %): С 0,1–0,35; Si 0,2–1,5; Mn 0,3–1,0; Cr 0,5–3,5; V 0,1–0,5; W 8–15; Cо 15–17,8; Mo 7–12; Ti 0,16–0,80; В 0,005–0,015.

2213799

2002105360/02

10.10.2003

Исаев Г.А. Сталь для резки проката и металлического лома. Предложенная сталь содержит (в %): С 0,23–0,35; Si 0,95–1,1; Mn 0,6–0,7; Cr 0,8–0,95; Ni 0,9–1,1; V 0,05–0,15; W 0,6–0,75; Ca 0,001–0,35; P 0,001–0,005; S 0,001–0,005; Cu 0,005–0,18. Техническим результатом изобретения является повышение коррозионной стойкости, ударной вязкости и износостойкости.

6663726

2000379222

16.12.2003

Abe Yukio, Nakatsu Hideshi, Tamura Yasushi, Kada Yoshihiro Инструментальная сталь с высокой твердостью для холодной деформации, обладающая высокой обрабатываемостью резанием в термически упрочненном состоянии, инструмент и способ его изготовления. Предлагают сталь. обладающую высокой твердостью (более 50 HRC) и хорошей обрабатываемостью резанием после упрочняющей термической обработки. Сталь содержит (в %): С 0,3–0,5; Si 0,7–2,0; Mn 0,1–2,0; Cr 0,1–1,5; W и Мо до 3,5 (каждого); S 0,08–0,25. Инструмент для холодной деформации изготавливают после закалки и отпуска, проводя обработку резанием.

2232201

2003112115/02

10.07.2004

Ворожищев В.И., Павлов В.В., Козырев Н.А., Тарасова Г.Н. Сталь. Для ножей резки металлолома предлагают сталь, содержащую (в %): С 0,50–0,60; Si 0,50–0,80; Mn 0,40–0,60; Cr 1,0–1,30; V 0,12–0,20; W 2,20–2,70; N 0,012–0,020; Mo 0,35–0,50; Al 0,15–0,035. Техническим результатом изобретения является повышение эксплуатационной стойкости ножей за счет увеличения прочности и вязкости стали, а также сопротивления хрупкому разрушению.

6761853

2001060782

13.07.2004

Ishida Kiyohito, Oikawa Katsunar, Fujii Toshimitsu, Matsuda Yukinori Легкообрабатываемая инструментальная сталь. Предлагают обладающую повышенной обрабатываемостью сталь для изготовления штампов и различного рода инструмента, содержащую (в %): С 0,1–0,6, Ti и/или Zr при сумме Ti + 0,52Zr = 0,03–3,5, а также S, Se,Te при сумме S + 0,4Se + 0,25Te = 0,01–1,0 и содержащую дисперсные выделения комплексной фазы на основе Ti и/или Zr, обеспечивающей повышенную обрабатываемость резанием.

6841122

10/133467

11.01.2005

Hayano Rinzo, Maeda Iji Штамповая сталь для горячего деформирования. Предложена сталь, отличающаяся высокой коррозионной стойкостью в среде расплавленного металла и жаропрочностью в среде расплавленного металла, и изготавливаемая из нее оснастка. Сталь содержит (в %): С 0,05–0,10; Si до 0,04; Mn до 0,7; Cr 5,0–13,0; V 0,01–1,0; W 1,0–8,0; Ni до 0,1; N 0,005–0,050; Мо до 2,0; Со 1,0–10,0; В 0,003–0,020 и отдельно или совместно Nb и Ta 0,001–1,0. Для повышения твердости рабочие поверхности могут быть подвергнуты азотированию, цементации и ионной имплантации.

2274673

2004119538/02

20.04.2006

Зубкова Е.Н., Водопьянова В.П. Инструментальная штамповая сталь. Предложена сталь, содержащая (в %): С 0,75–0,9; Si 0,1–0,6; Mn 0,1–1,2; Cr 6,8–8,0; V 0,01–0,5; W 1,1–1,5; Ni 0,01–0,4; Мо 5,0–6,0; Со 5,0–6,0; Al 0,01–0,6; S 0,15–0,35. Изобретение направлено на повышение твердости, теплостойкости, износостойкости, обрабатываемости резанием и шлифуемости без ухудшения свариваемости, термообрабатываемости. Высокие показатели износостойкости, обрабатываемости резанием и шлифуемости обеспечиваются защитными сульфидными пленками, образующимися на рабочих поверхностях в процессе эксплуатации, благодаря комплексному легированию серой, молибденом и кобальтом. Высокие значения твердости и теплостойкости достигаются за счет дисперсионного упрочнения при легировании кобальтом и молибденом.

 

1.3 Обоснование выбранного направления

Для исследования была выбрана инструментальная сталь 4Х5МФ1С. Данная марка стали применяется для изготовления штампов для горячей деформации и ножей для холодной резки. Последние находят применение в условиях ОАО «НЛМК» для резки углеродистых и электротехнических сталей, поэтому весьма важным является изучение влияния термической обработки на свойства данной стали, так как оптимизация режимов обработки позволит увеличить производительность, стойкость инструмента и положительно скажется при его эксплуатации.

Кроме того, присутствует экономический эффект, так как варьирование температур закалки и отпуска поможет снизить потери материала при изготовлении инструмента за счет уменьшения припуска на обезуглероженный слой.

1.4 Цель исследования

1. Изучить зависимость твердости от температуры закалки и отпуска. Показать, что сталь склонна к вторичному твердению.

2. Изучить зависимость глубины обезуглероженного слоя от температуры закалки.

3. Изучить зависимость размера аустенитного зерна, а значит и пластических свойств, от температуры закалки.

4. Изучить зависимость износостойкости стали от температуры отпуска и типа нанесенного покрытия.

5. Выявить микроструктуру закаленной стали и закономерности растворения карбидов при закалке.


2. Методика исследования

 

2.1 Материал и обработка

Для проведения исследования была выбрана штамповая сталь для горячего деформирования марки 4Х5МФ1С, выплавленная в условиях завода «Электросталь». Выплавка, разливка и другие операции производились согласно действующей технологической инструкции. Химический состав стали представлен в табл. 4.

Таблица 4. Химический состав стали 4Х5МФ1С

C Si Mn Cr W V Mo Ni
0,32 1,05 0,35 5,00 1,10 0,80

После выплавки сталь была подвергнута горячей пластической деформации (ковке). Начало ковки при 1160оС, конец – при 850оС. Охлаждение после ковки замедленное. В качестве предварительной термической обработки использовался отжиг, предназначенный для измельчения зерна и получения низкой твердости. Температура отжига составила 850оС. В состоянии поставки сталь имела структуру зернистого перлита.

Далее из поковки диаметром 250 мм были вырезаны образцы размером 10×10×55 мм и подвергнуты окончательной термической обработке в цеховых условиях. Образцы с маркировочными номерами 1, 12, 24, 42, 59 были закалены в камерной печи на температуры 950, 1 000, 1 050, 1 070 и 1 100°C. Охлаждение производилось в масле. Образцы с номерами 2, 30, 31, 34, 35, 69, 70, 89, 91, 92 закалены с температуры 1 070°C и подвергнуты отпуску с разными температурными режимами. Кроме того на образцы 30, 89, 91 были нанесены покрытия из нитрида и оксинитрида титана.


Таблица 5. Режимы термообработки экспериментальных образцов

Маркировка образца Термическая обработка

Температура закалки, оС

Температура отпуска, оС

1 1 950
2 12 1 000
3 24 1 050
4 42 1 070
5 59 1 100
6 35 1 070 230
7 34 1 070 310
8 31 1 070 400
9 70 1 070 530
10 91 1 070 550
11 30 1 070 570
12 92 1 070 570
13 89 1 070 600
14 69 1 070 650
15 2 1 070 660

 


Информация о работе «Исследования свойств штамповой стали после термической обработки»
Раздел: Промышленность, производство
Количество знаков с пробелами: 140975
Количество таблиц: 39
Количество изображений: 36

Похожие работы

Скачать
133990
34
13

... этапе является более дешевым оборудованием, чем молот. 3. При внедрении и реализации нового технологического процесса штамповки детали типа "фланец" их хромоникелевого жаропрочного сплава уменьшается количество технологических операций, уменьшается суммарная трудоемкость процесса. 4. В рамках разработки нового технологического процесса проведены основные технологические расчеты: определена ...

Скачать
65021
2
0

... относят к определенной группе отраслей промышленности – твердые безвольфрамовые сплавы – один из продуктов перерабатывающей промышленности. Потребительские свойства безвольфрамовых твердых сплавов Наиболее важными свойствами металлокерамических твердых сплавов являются: твердость, вязкость, стойкость на истирание, удельный вес, теплопроводность и красностойкость. Все эти свойства тесно ...

Скачать
113333
0
2

... влияющие на точность и воспроизводимость результатов. Области практического применения лазерной размерной обработки ограничены преимущественно получением отверстий не выше 3-го класса точности. Тем не менее, лазерная технология получения отверстий внедрена на ряде предприятий, где с ее помощью получают черновые отверстия (на проблемах внедрения этих процессов мы остановимся позднее). Относительно ...

Скачать
77363
0
0

... факторы, т.е. изменяющаяся температура и давление, для сплавов принята несколько иная форма зависимости с = к -ф + 1 при условии постоянства давления. С учетом правила фаз, как объясняющего процесс кристаллизации, кристаллизацию металлов, которая протекает при постоянной температуре можно объяснить следующим образом: С12 =1-1+1=1С2=1-2+1=0 С2`-3=1-1+1=1 Для двухкомпонентных систем, которые ...

0 комментариев


Наверх