11.2. Прочность при повторно-переменных нагрузках
11.2.1. Усталость материалов. Это - разрушение материалов при многократном приложении нагрузки; способность сопротивляться такому разрушению - выносливость материала. Для усталостного разрушения необходимо, чтобы действующие напряжения превысили напряжения, равные пределу выносливости. Усталость материалов связана с появлением местных нарушений целостности в зоне межкристаллических соединений вследствие пластических сдвигов и появления микротрещин, которые в дальнейшем расширяются и разрушают материал.
11.2.2. Параметры, определяющие усталостную прочность. Совокупность всех напряжений за один период нагружения - цикл напряжений. На усталостную прочность влияют (sig) max - максимальное и (sig) min - минимальное напряжения, коэффициент асимметрии цикла r = (sig) min/ (sig) max и число циклов нагружения (N) ц. При постоянной нагрузке r = +1, при симметричной знакопеременной r = -1; циклы с последним коэффициентом наиболее опасны для материалов. Предел выносливости - напряжение, которое материал выдерживает без разрушения при любом числе циклов, обозначают (sig) -1 и определяют на специальных образцах опытным путем. Существуют две группы материалов: с явно выраженным пределом усталости и без такового (рис.11.3) . Для сталей предел выносливости достигается при (N) ц = 10**7, для цветных материалов при (N) ц = (5- 10) .10**7; для материалов, у которых этот предел практически определить невозможно, вводят понятие условного предела выносливости при ограниченном числе циклов нагружения.
11.2.3. Факторы, влияющие на выносливость деталей. Наибольшее влияние оказывают:
а) концентрация напряжений;
б) состояние поверхности;
в) размеры детали.
Концентрация напряжений - местное увеличение напряжений в зонах изменения формы и размеров деталей (сужений, канавок, отверстий и т.п).
Коэффициент концентрации напряжений (k) sig = [ (sig) -1]/[ (sig) -1]к > 1, где [ (sig) -1]к - предел выносливости материала детали с концентратором напряжений.
Состояние поверхности сказывается в том случае, если она не полирована. Микровыступы являются микроконцентраторами напряжений. Поэтому вводят коэффициент bet = [ (sig) -1]/[ (sig) -1]п < 1, где [ (sig) -1]п - предел выносливости для полированной детали.
Размеры детали влияют на предел выносливости тогда, когда они намного превышают размер испытательного образца, на котором определяют предел выносливости (для стандартного образца d = 10 мм) ; это учитывают коэффициентом eps = [ (sig) -1]/[ (sig) -1]об < 1, где [ (sig) -1]об - предел выносливости образца.
11.2.4. Расчет прочности при переменных нагрузках. Допустимое напряжение определяют на базе предела выносливости для заданного числа циклов или на базе (sig) -1, вводя коэффициенты концентрации нагрузки, состояния поверхности и размеров детали:
sig = [ (sig) -1) p = [ (sig) -1]*bet*eps/ (k)sig . (11.6)
11.3. Прочность при сложном нагружении
11.3.1. Сложное напряженное состояние. Возникает как результат одновременного действия нескольких видов нагружения; в общем случае все три главных напряжения sig1, sig2 и sig3 не равны нулю (рис. 11.4) .
Экспериментальная оценка в этом случае практически исключена из-за большого количества соотношений между sig1, sig2 и sig3 . Поэтому вводят критерии прочности, учитывающие влияние на прочность материала какоголибо одного силового фактора или группы таких факторов. Основная трудность при образовании таких критериев заключается в том, что предельное напряженно-деформированное состояние даже для структурно-однородных материалов в действительности определяется большим числом параметров: значениями главных напряжений sig1, sig2 и sig3, чувствительностью материалов к касательным напряжениям, различной прочностью при растяжении и сжатии и т.п. При этом сложное напряженное состояние приводят к эквивалентному одноосному. Условие прочности - сравнение эквивалентного напряжения (sig) экв с допустимым для одноосного растяжения [ (sig) рас]p :
(sig) экв < [ (sig) рас]p . (11.7)
11.3.2. Универсальный критерий прочности Писаренко-Лебедева.
Предполагает, что наступление предельного состояния определяется способностью материала воспринимать как нормальные, так и касательные напряжения. Эквивалентное напряжение находят из выражения
(sig) экв = X* (sig) i + (1 - X) *sig1 . (11.8)
Интенсивность напряжений (sig) i определяют из выражения для удельной потенциальной энергии формоизменения элементарного обьема материала:
(u)ф = [ (sig) i]**2/2*E ;
(sig) i = (sig1**2 + sig2**2 + sig3**2 - sig1*sig2 -
sig1*sig3 - sig2*sig3) **0.5 .
Коэффициент X = [ (sig) +]/[ (sig) -] учитывает различную сопротивляемость материала предельным напряжениям растяжения [ (sig) +] и сжатия
[ (sig) -] . Для реальных конструкционных материалов 0 < X < 1; для абсолютно хрупких X = 0, для абсолютно пластичных X = 1. Для плоского напряженного состояния sig3 = 0 и (sig) i = (sig1**2 + sig2**2 - sig1*sig2) **0.5 .
11.3.3. Допустимые напряжения (sig) p определяют при одноосном растяжении на базе предела текучести (sig) т для пластичных материалов или предела прочности (sig) в - для хрупких:
(sig) p = (sig) т/n ; (sig) p = (sig) в/n, (11.9) где n - коэффициент запаса прочности, определяемый функциональным назначением детали.
РАЗДЕЛ 3. ОСНОВЫ ВЗАИМОЗАМЕНЯЕМОСТИ И ЭЛЕМЕНТЫ ТЕОРИИ ТОЧНОСТИ МЕХАНИЗМОВ
Глава 12. Функциональная взаимозаменяемость и параметры точности
... . Всё вышеуказанное объединяется в ёмкое понятие CAE - Computer AidedEngineering. Специфические характеристики и различия между проектированием, производством и применением микросистем по сравнению с традиционными (макро) реализациями вытекают из их размеров. Микросистемная технология непригодна для производства опытных образцов. Если схема производства для массового производства по групповой ...
... ; · транзисторы; · разьемы; 4) пайка 5) очистка ПП; 6) маркировка; 7) контроль; 8) настройка. Разработанная технология сборки приведена в приложении. Заключение В результате работы над курсовым проектом была разработана конструкция прибора измерителя емкости, которая полностью отвечает современным эргономическим, массогабаритным и функциональным требованиям, а также другим ...
... т.е. для защиты источника от утечки информации, требуется нарушение энергетических и временных условий существования канала утечки путем использования различных по физическим принципам средств защиты. Технические характеристики акустопреобразовательного канала Акустоэлектрический преобразователь-устройство, преобразующее электромагнитную энергию в энергию упругих волн в среде и обратно. В ...
... операции в процессе производства РЭА; е) значительно расширить класс принципиально осуществимых по сложности проектов, как, например, устройств на БИС и т. д. Основной целью создания систем автоматизации проектирования РЭА, представляющих собой сложные человеко-машинные комплексы, является эффективное использование характерных особенностей каждой стороны, участвующей в процессе разработки РЭА ...
0 комментариев