8.4. Экспериментальное определение механических параметров материалов
8.4.1. Диаграмма напряжений при растяжении. Это - зависимость sig - eps, полученная при растяжении стандартных образцов из исследуемого материала на испытательных машинах; строится условной - без учета поперечных деформаций, т.е. растягивающее усилие относят к первоначальному сечению образца: sig= P/ (S)0. Материалы делят на две группы: пластичные - с большими относительными удлинениями и хрупкие - с малыми.
8.4.2. Диаграмма растяжения пластичных материалов (рис.8.8) .
Характерные напряжения: (sig) у - предел упругости; (sig) пц - предел пропорциональности (до этого напряжения выполняется закон Гука) ; (sig) т предел текучести (появляются пластические деформации) ; (sig) в - предел прочности, после его превышения на образце появляется сужение - шейка, и в дальнейшем происходит разрыв. Если нагрузку снять при напряжении sig > (sig) у, появится остаточная деформация. Пределу текучести соответствует удлинение, равное 0.2%, которое обозначают (eps) 0.2. Полное остаточное удлинение (eps) ост для пластичных материалов составляет 5-25%.
8.4.3. Диаграмма растяжения хрупких материалов (рис.8.9) .
Она нелинейна и на ней нет характерных точек и зон. В качестве условного предела текучести принимают напряжение (sig) 0.2 . Разрыв происходит без образования шейки при достижении напряжения (sig) в . Обычно остаточное удлинение (eps) ост < 5%.
8.4.4. Параметры твердости характеризуют сопротивляемость материала внедрению в него острого твердого тела - индентора; выражаются условными числами твердости: Бринелля НВ - для низкой и средней твердости,
Роквелла HR и Виккерса HV - для средней и высокой твердости, которые определяют, вдавливая в поверхность материала соответственно стальной шарик, алмазный конус, алмазную четырехгранную пирамиду.
Для многих материалов твердость HB связана с пределом прочности простым соотношением: (sig) в = k*HB; для большинства сталей k = 0.34 - 0.36; для деформируемых алюминиевых сплавов k = 0.38.
Глава 9. РАБОТА СТЕРЖНЕЙ ПРИ СДВИГЕ И КРУЧЕНИИ
9.1. Работа стержней при сдвиге
9.1.1. Общая характеристика. Сдвиг - плоское напряженное состояние, возникающее под действием поперечных сил (рис.9.1) . Соседние бесконечно близкие сечения сдвигаются по отношению друг к другу, что вызывает появление касательных напряжений tau . В условиях сдвига в конструкциях работают крепежные детали (винты, штифты), валы, стойки.
9.1.2. Закон парности касательных напряжений и главные напряжения при сдвиге. Напряжения tau всегда парны в двух перпендикулярных сечениях, что следует из рассмотрения равновесия элементарного обьема материала в зоне сдвига (рис.9.2) . Парные касательные напряжения приводят к появлению двух главных нормальных напряжений: sig1 = tau - растягивающего и sig2 = -tau - сжимающего, повернутых на 45 грд относительно оси стержня (рис.9.3) .
9.1.3. Деформация при сдвиге и закон Гука. Картина деформации элементарного обьема изображена на рис.9.4. Линейный сдвиг - а, угловой - gam, del (dl) - удлинение диагонали элемента dl. Связь деформаций:
eps = del (dl) /dl = (a/ (2**0.5) *[1/ (2**0.5*dx) ] = gam/2 .
С учетом поперечных деформаций от напряжений sig2 закон Гука при сдвиге имеет вид:
eps = sig1/E + nju*sig2/E = tau* (1+ nju) /E ;
tau = {E/[2* (1+ nju) ]}*gam = G*gam ; (9.1)
G = E/[2* (1+ nju) ],
где G - модуль упругости второго рода, или модуль сдвига.
Напряжения и закон Гука для стержня жесткостью G*S:
tau = P/S ; gam = P/ (G*S) . (9.2)
9.1.4. Прочность при сдвиге. Условия прочности проверяют и по нормальным, и по касательным напряжениям:
(sig) 1, 2 < (sig) p ; tau < (tau) p . (9.3)
9.2. Работа стержней при кручении
9.2.1. Общая характеристика кручения. Это - плоское напряженное состояние, возникающее под действием крутящего момента Tк (рис.9.5) .
Соседние сечения стержня, нормальные к его оси, поворачиваются относительно друг друга на угол dfi, поэтому в них возникают касательные напряжения tau; элементарные площадки на его боковой поверхности деформируются так же, как и при сдвиге, т.е. напряженные состояния при кручении и сдвиге одинаковы.
9.2.2. Деформации при кручении. Для элементарного цилиндра радиусом ro и длиной dx, выделенного из скручиваемого стержня (рис.9.6) :
gam = ro*dfi/dx . (9.4)
9.2.3. Напряжения при кручении. Закон Гука при кручении получают из выражения закона Гука при сдвиге (9.1) и соотношения (9.4) :
tau = G*ro* (dfi/dx) . (9.5)
По закону парности касательные напряжения существуют также и в осевой плоскости стержня (рис.9.7) ; напряжения tau можно связать с внешним моментом Tк :
Tк = int (tau*ro*dS) S = int[G*ro* (dfi/dx) *dS]S =
= G* (dfi/dx) *int[ro**2*dS]S = Jp*G* (dfi/dx) . (9.6)
Величина Jp = int (ro**2*dS) S - полярный момент инерции сечения.
Закон Гука для стержня жесткостью G*Jp и длиной l :
dfi/dx = Tк/ (G*Jp) ; fi = Tк*l/ (G*Jp) . (9.7)
Связь напряжений с внешним моментом:
tau = Tк*ro/Jp ; (tau) max = Tк* (ro) max/Jp = Tк /Wp, (9.8)
где Wp = Jp/ (ro) max - полярный момент сопротивления сечения стержня.
... . Всё вышеуказанное объединяется в ёмкое понятие CAE - Computer AidedEngineering. Специфические характеристики и различия между проектированием, производством и применением микросистем по сравнению с традиционными (макро) реализациями вытекают из их размеров. Микросистемная технология непригодна для производства опытных образцов. Если схема производства для массового производства по групповой ...
... ; · транзисторы; · разьемы; 4) пайка 5) очистка ПП; 6) маркировка; 7) контроль; 8) настройка. Разработанная технология сборки приведена в приложении. Заключение В результате работы над курсовым проектом была разработана конструкция прибора измерителя емкости, которая полностью отвечает современным эргономическим, массогабаритным и функциональным требованиям, а также другим ...
... т.е. для защиты источника от утечки информации, требуется нарушение энергетических и временных условий существования канала утечки путем использования различных по физическим принципам средств защиты. Технические характеристики акустопреобразовательного канала Акустоэлектрический преобразователь-устройство, преобразующее электромагнитную энергию в энергию упругих волн в среде и обратно. В ...
... операции в процессе производства РЭА; е) значительно расширить класс принципиально осуществимых по сложности проектов, как, например, устройств на БИС и т. д. Основной целью создания систем автоматизации проектирования РЭА, представляющих собой сложные человеко-машинные комплексы, является эффективное использование характерных особенностей каждой стороны, участвующей в процессе разработки РЭА ...
0 комментариев