Определение закона движения механизма

90988
знаков
0
таблиц
0
изображений

6.4. Определение закона движения механизма.

6.4.1. Динамика - раздел динамического анализа, посвященный определению законов движения звеньев M. Закон движения - зависимость кинематических параметров от времени:

s = s (tau) ; v = v (tau) ; w = w (tau) ;

fi = fi (tau) ; omega = omega (tau) ; eps=eps (tau) ; (6.12)

где s, v, w - линейные, fi, omega, eps - угловые параметры движения.

Сущность метода определение законов движения звеньев и всего M сводится к интегрированию дифференциальных уравнений

F = m* (d2s/dtau2) или T = J* (d2fi/dtau2), являющихся выражением второго закона механики (закона Ньютона) .

Особенность определения законов движения звеньев:

а) многочисленность звеньев в сложных M, поэтому для каждого звена могут быть свои законы движения;

б/ связанность звеньев и следовательно, их движений.

6.4.2. Определение закона движения звена приведения. Чтобы оперировать минимальным числом параметров, в механизме выделяют звено приведения - какое-либо из звеньев, характер движения которого простейший: движение это прямолинейное или вращательное. Влияние массовых характеристик остальных звеньев и действующих на них усилий учитывают с помощью приведенных параметров, значения которых определяют из условий энергетической эквивалентности звена приведения и всего М. Это значит, что энергия и характер ее изменения для звена приведения и для всего M в каждый момент времени одинаковы.

6.4.3. Приведенные массовые характеристики. При поступательном движении звена приведения со скоростью (v) пр приведенную массу (m) пр находят из условия равенства кинематических энергий звена и всего M, в котором массы mi совершают поступательные движения со скоростями vi, а моменты инерции Jk - вращательные со скоростями omegak :

(m)пр = sum{ mi*[vi/ (v)пр]**2 } + sum{ Jk*[omegak/ (v)пр]**2 }. (6.13)

Соотношения vi/ (v)пр и omegak/ (v)пр представляют собой функции скорости для звеньев M, определенные по отношению к звену приведения, поэтому приведенная масса - переменная величина, определяемая функцией положения M - формой и размерами звеньев и их взаимными положениями.

Если звено приведения вращается со скоростью (omega) пр, оно должно обладать приведенным моментом инерции

(J)пр = sum{ mi*[vi/ (omega) пр]**2 } +

+ sum{ Jk*[omegak/ (omega) пр]**2 }, (6.14)

 который также определяется функцией положения.

6.4.4. Приведенные силовые характеристики. Это - приведенная сила и приведенный момент, определяемый из условий равенства мощностей на звене приведения и во всем M . Приведенная сила

(F)пр = sum{ Fi*[vi/ (v)пр]**2 } + sum{ Tk*[omegak/ (v)пр]**2 }; (6.15)

приведенный момент

(T)пр = sum{ Fi*[vi/ (omega) пр]**2 } +

+ sum{ Tk*[omegak/ (omega) пр]**2 }; (6.16)

6.4.5. Уравнение движения звена приведения. Может быть получено из условия эквивалентности изменения энергии и работы на некотором элементарном перемещении (обычно учитывают только кинетическую энергию E подвижных звеньев) :

dA = dE = T*dfi ; dA = dE = F*ds,

где dA - элементарная работа на элементарном перемещении dfi или ds,

T - момент движущих сил, F - движущая сила.

Для звена приведения (при вращательном движении) :

d[ (E)пр]/d (fi) пр = (T) пр = d[ (J)пр* (omega) пр**2/2]/d (fi) пр .

Приведенный момент инерции (J) пр зависит от (fi) пр, поэтому

d[ (E)пр]/d (fi) пр = 0.5*{ d (J)пр/d (fi) пр* (omega) пр**2 } +

+ (J) пр* (omega) пр*d (omega) пр/d (fi) пр =

= 0.5*{ d (J)пр/d (fi) пр* (omega) пр**2 } +

+ (J) пр*[d (omega) пр/dtau] .

Момент приведенной силы (T) пр представляют как сумму движущего момента (T) д и момента сил сопротивления (T) с :

(J)пр*[d2 (fi) пр/dtau2] + 0.5*{ d (J)пр/d (fi) пр* (omega) пр**2 } =

= [ (T)д + (T) с]пр . (6.17)

Это - уравнение движения M в форме моментов - для вращательного движения приведенного звена. Соответствующее выражение для поступательного движения - уравнение движения в форме сил:

(m)пр*[d2 (s)пр/dtau2] + 0.5*{ d (m)пр/d (s)пр) * (v)пр**2 } =

= [ (F)д + (F) с]пр . (6.18)

Уравнения (6.17) и (6.18) могут быть проинтегрированы, если известны конкретные выражения для массовых и силовых приведенных характеристик.

6.4.6. Законы движения остальных звеньев. Могут быть определены, если уравнения движения решены и для звена приведения получены зависимости типа (6.12) ; с помощью кинематических характеристик - функций положения, скорости и ускорения для М осуществляют переход к кинематическим параметрам, и, следовательно, к законам движения всех звеньев.

6.5. Колебательные процессы в М .

6.5.1. Периодические силы возникают в М как результат вращательного движения звеньев вокруг осей, не проходящих через центр масс. В подобных случаях инерционную силу (F) и = m*r*omega**2 ( рис. 6.11 ) можно представить в виде суммы двух составляющих Fx = (F) и*sin (fi) и Fz =(F) и*cos (fi), и если omega = d (fi) /dtau, то Fx и Fz будут периодическими силами . Воздействия таких сил приводят к возникновению в механических системах колебательных (вибрационных) процессов.

6.5.2. Параметры колебательных процессов процессов получают, рассматривая движение физического тела относительно осей выбранной неподвижной системы координат. Тело массой m связано упругими связями с основанием, которое может быть неподвижно, и в этом случае колебательное движение вызывается непосредственным воздействием периодической силы на тело (силовое возбуждение), или само основание может периодически смещаться и передавать силовое воздействие на тело через упругую связь (кинематическое возбуждение) . Расчетные схемы приведены на рис. 6.12, а уравнение движения тела, в соответствии с (6.18) :

m*x" = F (tau) - Fс, (6.19)

где F (tau) - внешняя периодическая сила, Fc - сила сопротивления,

x" - линейное ускорение при движенни вдоль оси x .


Информация о работе «Механизмы и несущие конструкции радиоэлектронных средств»
Раздел: Наука и техника
Количество знаков с пробелами: 90988
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
53101
5
15

... . Всё вышеуказанное объединяется в ёмкое понятие CAE - Computer AidedEngineering. Специфические характеристики и различия между проектированием, производством и применением микросистем по сравнению с традиционными (макро) реализациями вытекают из их размеров. Микросистемная технология непригодна для производства опытных образцов. Если схема производства для массового производства по групповой ...

Скачать
65704
6
2

... ; ·  транзисторы; ·  разьемы; 4)  пайка 5)  очистка ПП; 6)  маркировка; 7)  контроль; 8)  настройка. Разработанная технология сборки приведена в приложении. Заключение В результате работы над курсовым проектом была разработана конструкция прибора измерителя емкости, которая полностью отвечает современным эргономическим, массогабаритным и функциональным требованиям, а также другим ...

Скачать
45476
1
15

... т.е. для защиты источника от утечки информации, требуется нарушение энергетических и временных условий существования канала утечки путем использования различных по физическим принципам средств защиты. Технические характеристики акустопреобразовательного канала Акустоэлектрический преобразователь-устройство, преобразующее электромагнитную энергию в энергию упругих волн в среде и обратно. В ...

Скачать
29890
0
0

... операции в процессе производства РЭА; е) значительно расширить класс принципиально осуществимых по сложности проектов, как, например, устройств на БИС и т. д. Основной целью создания систем автоматизации проектирования РЭА, представляющих собой сложные человеко-машинные комплексы, является эффективное использование характерных особенностей каждой стороны, участвующей в процессе разработки РЭА ...

0 комментариев


Наверх