6.13 Звено чистого запаздывания
ММ:
Передаточная функция:
АФХ:
Раздел 7. Анализ устойчивости систем
В замкнутой динамической системе выходной сигнал не может появиться на входе мгновенно для противодействия входному сигналу. Это обусловлено тем, что энергия в подсистемах не может изменяться мгновенно, то есть существует запаздывание. Энергия колеблется относительно некоторого уровня и при определённых условиях система из источника подавления колебаний становится их генератором, то есть оказывается неустойчивой.
7.1 Понятие устойчивости по А. М. Ляпунову
(1892 год.)
Рассмотрим непрерывную многомерную систему в свободном движении, математическая модель которой следующая:
… (1)
Здесь Xi — любая линейная или нелинейная функция, а xi — обобщённая фазовая координата или переменная состояния системы n-мерного порядка (фазовые координаты).
В n-мерном фазовом пространстве (пространстве состояний) в фиксированный момент времени xi определяют состояние системы в виде точки с соответствующими координатами, например, при n=3:
M(x) — изображающая точка. В переходном режиме изображающая точка описывает некоторую траекторию, которую назовём фазовой. |
Проекции вектора скорости изображающей точки на оси — левые части уравнений (1), следовательно, о поведении системы в переходном режиме можно судить по правым частям уравнений (1).
Так, например, если n=2, имеем фазовую плоскость:
Исключая из этой системы время t, получим:
Интегрируя это уравнение, получим семейство фазовых траекторий (фазовый портрет) системы, каждая из которых соответствует определённому значению постоянной интегрирования.
Фазовый портрет полностью определяет основные свойства свободного движения системы.
Пусть в начальный момент времени изображающая точка M(xi0) при t=0 начала двигаться по некоторой невозмущённой фазовой траектории и пусть в тот же самый начальный момент времени на неё подействовал мгновенный кратковременный импульс, который сместил эту точку в положение . В результате точка M будет двигаться по возмущённой траектории . |
Таким образом, движение системы устойчиво, если при сдвиге начального положения изображающей точки на величину не более малой положительной величины (*) возмущённое движение в последующие моменты времени будет отличаться от невозмущённого на величину не более сколь угодно малой величины (**).
В противном случае движение системы не устойчиво.
Если при этом выполняется условие (***), то движение асимптотически устойчиво. Следовательно, по Ляпунову оценивается устойчивость системы при достаточно малых начальных отклонениях. Линейная стационарная система, устойчивая “в малом”, будет устойчива и “в большом”.
7.2 Необходимые и достаточные условия устойчивости линейных стационарных систем
Пусть известна математическая модель системы, описывающая свободное движение системы в виде однородного дифференциального уравнения:
(1)
или разностного уравнения
(1΄)
и пусть x — это отклонение интересующей нас переменной от её значения в равновесном режиме. Тогда система будет устойчива, если выполняется условие (2)
или (2΄)
При каких условиях выполняется равенство (2)?
Уравнениям (1) и (1΄) соответствуют характеристические уравнения:
… (3)
… (3΄)
Если корни si уравнения (3) различны, то решение уравнения (1) может быть записано следующим образом .
В общем случае корни являются комплексными si=αi+jβi.
1) Если αk>0 A→∞ система не устойчива.
2) Если αk<0 A→0 система устойчива.
3) Если αk=0 A=ck=const система нейтрально устойчива.
Следовательно, для устойчивости линейной непрерывной стационарной системы необходимо и достаточно, чтобы все корни характеристического уравнения имели отрицательные вещественные части, то есть располагались в левой полуплоскости плоскости S.
Можно показать, что для устойчивости дискретной линейной стационарной системы необходимо и достаточно, чтобы все корни характеристического уравнения (3΄) zi были: |zi|<1 … (!!)
Лекция №8. 05.03.2003
... существует внутренний механизм целеполагания. Наука, которая первой начала исследование подобных систем, получила название кибернетики. Кибернетика Кибернетика (от греч. kybernetike - искусство управления) — это наука об управлении сложными системами с обратной связью. Она возникла на стыке математики, техники и нейрофизиологии, и ее интересовал целый класс систем, как живых, так и неживых, ...
... действие внутренних тенденций, и система сама построит необходимую структуру. Нужно только знать потенциальные возможности данной среды и способы их стимуляции. В основе синергетического подхода к управлению социальными системами – механизм резонансных направляющих воздействий на нелинейную систему, в ходе развития которой всегда существует область параметров и стадий, в рамках которых нелинейная ...
... полномочий. Оперативность структуры означает возможность реакции системы на изменения обстановки, временные показатели этой реакции и ее цену. Типичным примером организации как сложной системы является производственно-экономическая система (ПЭС). Основным видом производственно-экономических систем является предприятие. Приведем, применительно к промышленному предприятию, некоторые необходимые ...
... , учитывая, что окружение будет меняться. Смысл стратегического управления в определении и осуществлении действий предприятия в настоящее время для обеспечения достойного будущего, а не разработка действий, которые будет осуществлять организация в дальнейшем. 1.2 Особенности стратегического подхода к управлению Стратегический подход к управлению не является идеальным решением дальнейшего ...
0 комментариев