4.1.2.2 Преобразование Лапласа непрерывных функций

Рассмотрим f1(t)=f(t)e-ct, c=const такая, что:

 (4)

При этом для существования этого интеграла от функции f(t) пришлось потребовать выполнения условия f(t)=0 t<0.

c>c0 (c0 — абсцисса абсолютной сходимости).

Для [1(t)] с0=0

Для etс0

Для eαtс0=-α

Для sinαt с0=0

Тогда получим (5)

Это интеграл Лапласа или формула обращения в преобразовании Лапласа.

(6)

f(t)F(s)

4.1.2.3 Нули и полюсы изображения F(s)

F(s) — дробно рациональная функция.

Корни полиномов R(s) и Q(s) определяют свойства изображения или свойства этой функции.


4.1.2.3.1 Нули изображения F(s)

Представим F(s) в следующем виде:

, а , значит F(s) имеет ноль кратности m в точке .

4.1.2.3.2 Полюса изображения F(s)

Полюса изображения F(s) — это корни полинома знаменателя Q(s).

, где ,

а , т.е. изображение F(s) содержит полюс кратности n при .

На комплексной плоскости s нули обозначают “0”, а полюса “Х”.

 

4.1.2.4 Дискретное преобразование Лапласа

Данное преобразование применяется для решетчатых функций.

(7)

(7΄)

4.1.2.5 Z-преобразование

Введём новую комплексную переменную z=est, тогда (7) можно представить в следующем виде:

(8)!!!!

s=c+j∞

Выбрав c>c0 ряд (8) будет сходиться, и решетчатой функции будет соответствовать Z-преобразование. f[i]F(z).

Z-преобразование применяют и к непрерывным функциям. При этом, если для РФ f[i] прямая и обратная задачи однозначны, то для непрерывной функции задача определения оригинала f[i] по его изображению не однозначна.

4.1.2.6 Основные свойства преобразования Лапласа и Z-преобразования

Свойства преобразования Лапласа Свойства Z-преобразования

1. Свойство линейности:

 

1. Свойство линейности:

 

2. Теорема о конечном значении:

Если функция s∙F(s) является аналитической в правой полуплоскости и на мнимой оси, то

2. Теорема о конечном значении:

3. Теорема о начальном значении:

Если , то

3. Теорема о начальном значении:

4. Теорема сдвига в области вещественной переменной:

t-τ — запаздывание (по оси вправо). t+τ — упреждение (по оси влево).

4. Теорема сдвига в области вещественной переменной:

, где k — целое число, кратное периоду дискретности.

5. Свойство дифференцирования:

Если начальные условия нулевые, то

6. Свойство интегрирования:

при нулевых начальных условиях

7. Теорема свёртки:


Лекция №7. 04.03.2003

8. Задача определения оригинала функции по её изображению:

а) Непрерывные функции

Смотри формулу (5) из пункта № 4.1.2.2.

б) Дискретные математические модели (для решетчатых функций)

Так как F(z) дробно рациональная функция, то проще эту задачу решать так: разделив числитель на знаменатель, F(z) можно разложить в ряд Лорана по убывающим степеням, т.е.

Известно, что

f0, f1, f2, … — дискреты искомой решетчатой функции f[iT].

4.1.2.7 Математические модели в комплексной области

 

4.1.2.7.1 Дискретные математические модели

Применяя к уравнению (Ⅰ) пункта № 4.1.1.1.2 Z-преобразование, с учётом свойств линейности и теоремы сдвига при нулевых начальных условиях получим:

(I*)


4.1.2.7.2 Непрерывные математические модели

Применяя к уравнению (Ⅱ) пункта № 4.1.1.2.2 преобразование Лапласа при нулевых начальных условиях, с учётом свойств линейности и дифференцирования получим:

(II*)


Информация о работе «Управление сложными системами»
Раздел: Информатика, программирование
Количество знаков с пробелами: 55819
Количество таблиц: 37
Количество изображений: 113

Похожие работы

Скачать
20377
0
0

... существует внутренний механизм целеполагания. Наука, которая первой начала исследование подобных систем, получила название кибернетики. Кибернетика Кибернетика (от греч. kybernetike - искусство управления) — это наука об управлении сложными системами с обратной связью. Она возникла на стыке математики, техники и нейрофизиологии, и ее интересовал целый класс систем, как живых, так и неживых, ...

Скачать
49195
0
0

... действие внутренних тенденций, и система сама построит необходимую структуру. Нужно только знать потенциальные возможности данной среды и способы их стимуляции. В основе синергетического подхода к управлению социальными системами – механизм резонансных направляющих воздействий на нелинейную систему, в ходе развития которой всегда существует область параметров и стадий, в рамках которых нелинейная ...

Скачать
73888
0
0

... полномочий. Оперативность структуры означает возможность реакции системы на изменения обстановки, временные показатели этой реакции и ее цену. Типичным примером организации как сложной системы является производственно-экономическая система (ПЭС). Основным видом производственно-экономических систем является предприятие. Приведем, применительно к промышленному предприятию, некоторые необходимые ...

Скачать
19437
1
1

... , учитывая, что окружение будет меняться. Смысл стратегического управления в определении и осуществлении действий предприятия в настоящее время для обеспечения достойного будущего, а не разработка действий, которые будет осуществлять организация в дальнейшем. 1.2 Особенности стратегического подхода к управлению Стратегический подход к управлению не является идеальным решением дальнейшего ...

0 комментариев


Наверх