Молекулярный спектр

Методы химического анализа
Общие сведения о методах анализа состава и измерения параметров продукции Классификация физико-химических методов анализа Электрохимические методы анализа Особенности физико - химических методов аналитического контроля Сигнал как информативная функция состава вещества Косвенные измерения Автоматизированные системы аналитического контроля Чувствительный элемент датчика автоматического анализатора Требования, предъявляемые к приборам аналитического контроля Оптические методы анализа Молекулярный спектр Классификация оптических методов анализа Основной закон светопоглощения — закон Бугера – Ламберта – Бера Молярный коэффициент светопоглощения Приводит концентрацию к системе моль/л Взаимодействие света с дисперсными гетерогенными системами Роль химической реакции, используемой в фотометрическом анализе Классификация приборов для фотометрических измерений Теоретические основы метода Электрохимические методы анализа Кондуктометрические методы анализа R — сопротивление - ом Метод осаждения Полумикробюретку заполнить рабочим раствором и установить над сосудом для титрования Потенциометрические методы анализа Электроды, применяемые в потенциометрических методах анализа Прямая потенциометрия – ионометрия Хроматография Фронтальная хроматография Теоретические основы хроматографии Сочетание газовой хроматографии с другими инструментальными методами (ИК-спектроскопией и др.) Жидкостная хроматография Распределительная хроматография
242525
знаков
34
таблицы
27
изображений

3.3 Молекулярный спектр

Появление полос поглощения обусловлено дискретностью энергетических состояний частиц, которые поглощают энергию, а также от природы электромагнитного излучения. Интенсивно поглощаются кванты света, которые соответствуют энергии возбуждения частицы.

Любая молекула, в соответствии с квантовыми законами, является устойчивой в определенных стационарных состояниях. Переход молекулы из одного состояния в другое связан с получением и отдачей энергии (также как у атома).

Молекула сложная система, в молекуле имеют место различные виды движения составляющих ее частиц - колебательные и вращательные. Если молекуле сообщать разные количества энергии, действуя электромагнитным излучением, то каждому из этих количеств Е=hv - будут соответствовать различные виды спектров.

В отсутствии внешнего магнитного поля энергию молекулы можно представить выражением 3.4:

Е = Еэл + Екол + Евр , (3.4)

где:

Еэл — электронная энергия молекулы, обусловлена движением электронов, принимающих участие в образовании связей, так и локализованных вокруг ядра.

Екол — колебательная энергия молекулы, обусловленная колебательным движением молекул, когда при неизменном положении центра тяжести молекул - периодически изменяется положение ядер и составляющих ее частиц.

Евр — вращательная энергия молекулы, обусловленная вращательным движением молекулы, когда периодически происходит изменение ориентации молекулы в пространстве и ее частей относительно друг друга.

Электронная энергия значительно превышает колебательную, а колебательная – вращательную.

Еэл·>> Екол > Евр

По порядку величин отношение этих энергий составляет:

,

где: mе- масса электрона;

М –масса молекулы .

Для большинства молекул mе =10-4 М = 10-5-10-5

Еэл : Екол : Езр = ~1 : 10-2 : 10-4

На основании этого можно представить энергетические уровни молекул, когда каждому электронному состоянию отвечает своя система колебательных уровней, а каждому колебательному своя система вращательных уровней:


0                      Еэл

 

 вр кол


 вр кол


0 Еэл1

Чисто вращательные переходы, т.е. переход между вращательными уровнями соответствует наименьшему изменению энергии от единиц до сотен Дж /моль или 10-5 –10-3 Дж/моль.

ΔЕвр = 10-5 · 10-3 Дж/моль

При этих переходах возникает чисто вращательный спектр, которому соответствует излучение микроволновой и части дальней ИК-области шкалы электромагнитных волн.

Переходам между колебательными уровнями одного и того же электронного состояния соответствует изменению энергии от единиц до сотен десятков КДж/м.

При этих переходах наблюдается колебательные спектры в ближней и дальней ИК - области.

Обычно при таких переходах изменяется и вращательная энергия молекул и происходит много переходов между вращательными подуровнями нижнего и верхнего колебательных уровней. В результате таких явлений в спектре возникает не одна линия, а совокупность близкорасположенных линий - образуя вращательную структуру колебательных полос (вращательно-колебательные спектры).

Переход молекулы из одного электронного состояния в другое составляет сотни КДж/моль, при этом возникают электронные спектры, наблюдаемые в видимой части спектра, а также в УФ - ближней и дальней.

Изменение электронного состояния молекулы сопровождается изменением колебательной и вращательной энергии, поэтому электронный молекулярный спектр состоит из совокупности колебательных полос, каждая из которых имеет вращательную структуру.

Из-за существования в молекуле переходов электронного, колебательного, вращательного - возникают и соответствующие спектры (молекулярные), они называются полосатыми.

Электронные спектры атомов газообразных веществ состоят из отдельных линий. Объясняется это тем, что атом не имеет колебательных и вращательных уровней энергии, а разрешенные значения электронной энергии - дискретны.

Спектры атомов более просты по сравнению со спектрами молекул.

Возвращение электрона в атоме из возбужденного состояния (с более высокого энергетического уровня на основной) в стабильное сопровождается выделением кванта энергии примерно равного поглощенному. Спектральные линии таких переходов лежат в области больших частот и малых длин волн.

Поглощение или испускание энергии можно определить по энергетическому состоянию молекулы в начальном и конечном энергетическом переходах, выражение 3.5.

ΔЕ = Е1 - Е2 = h · v, (3.5)

где: Е1 — начальное состояние молекулы;

Е2 — конечное состояние молекулы;

h — постоянная Планка (Дж/с);

v — частота излучения, поглощаемого или испускаемого при данном переходе (с-1). Если Е2 > Е1 - происходит поглощение излучения. Если Е12 - происходит испускание (эмиссия)излучения.

Каждому переходу соответствует своя частота излучения и своя длина волны.

Каждое вещество обладает способностью поглощать лучистую энергию в виде квантов энергии, соответствующих определенным длинам волн.

В практической спектрофотометрии поглощение проводят' в ультрафиолетовой (200 - 400 нм), видимой (400 - 700 нм) и инфракрасной областях (700 - 2000 нм) спектра.

Спектрофотометрический анализ основан на определении спектра поглощения или измерении светопоглощения при строго определенной длине волны, которая соответствует максимуму кривой поглощения данного вещества.

Характер спектров, которые можно наблюдать при взаимодействии электромагнитного излучения с веществом, определяется энергией излучения и строением энергетических уровней молекул исследуемых веществ.

Основными характеристиками спектров является положение линий или полос в шкале длин волн, их форма и интенсивность.


Информация о работе «Методы химического анализа»
Раздел: Промышленность, производство
Количество знаков с пробелами: 242525
Количество таблиц: 34
Количество изображений: 27

Похожие работы

Скачать
12646
7
0

... (рв) - на миллиард частей; - кг/м³, г/см³, моль/дм³, кг/т и др. Выражение концентрации через рm, ррm, рв используют в основном в фармацевтике (аптекарском деле). В количественном химическом анализе наиболее часто используют массовую, молярную и процентную концентрации. В качестве массовой концентрации широко применяется титр раствора. Различают “обыкновенный (простой)” и “ ...

Скачать
12056
0
0

... понимают совокупность тел, находящихся во взаимодействии между собой и отдельных от окружающей среды. Система называется термодинамической, если между ее отдельными частями возможен обмен энергией. Если возможен обмен не только энергией, но и веществом, то такая система называется физико-химической. Пример – насыщенный раствор соли с некоторым избытком твердой соли на дне и паром над ним. В ...

Скачать
17962
0
0

... каротин, ксантофилл, ликопин, лютеин. Витамины имеют высокую физиологическую активность, сложное и разнообразное химическое строение. Они необходимы для нормального роста и развития организма. Витамины регулируют окисление углеводов, органических кислот, аминокислот, некоторые из которых входят в состав НАД, НАДФ. Биосинтез витаминов свойственен преимущественно зелёным растениям. В животных ...

Скачать
13664
1
0

... прибора «Ионометр универсальный ЭВ-74». Дата сбора дождевой воды рН Направление ветра 3. 10. 2004 7 западное 5. 10. 2004 6.3 северо-западное 24.10.2004 6.6 северо-западное 2.2.Качественный анализ дождевой воды. Для проведения качественных реакций на различные ионы отбирали некоторое количество исследуемой дождевой воды, и, создавая нужные условия, добавляли необходимый ...

0 комментариев


Наверх