Электроды, применяемые в потенциометрических методах анализа

Методы химического анализа
Общие сведения о методах анализа состава и измерения параметров продукции Классификация физико-химических методов анализа Электрохимические методы анализа Особенности физико - химических методов аналитического контроля Сигнал как информативная функция состава вещества Косвенные измерения Автоматизированные системы аналитического контроля Чувствительный элемент датчика автоматического анализатора Требования, предъявляемые к приборам аналитического контроля Оптические методы анализа Молекулярный спектр Классификация оптических методов анализа Основной закон светопоглощения — закон Бугера – Ламберта – Бера Молярный коэффициент светопоглощения Приводит концентрацию к системе моль/л Взаимодействие света с дисперсными гетерогенными системами Роль химической реакции, используемой в фотометрическом анализе Классификация приборов для фотометрических измерений Теоретические основы метода Электрохимические методы анализа Кондуктометрические методы анализа R — сопротивление - ом Метод осаждения Полумикробюретку заполнить рабочим раствором и установить над сосудом для титрования Потенциометрические методы анализа Электроды, применяемые в потенциометрических методах анализа Прямая потенциометрия – ионометрия Хроматография Фронтальная хроматография Теоретические основы хроматографии Сочетание газовой хроматографии с другими инструментальными методами (ИК-спектроскопией и др.) Жидкостная хроматография Распределительная хроматография
242525
знаков
34
таблицы
27
изображений

4.2.2 Электроды, применяемые в потенциометрических методах анализа

Во всех потенциометрических методах анализа используют гальванические элементы, включающие два электрода, помещённые в один и тот же раствор и измеряют ЭДС полученного гальванического элемента.

Электрод, потенциал которого зависит от концентрации (активности) определяемого иона в растворе, называется индикаторным. Индикаторные электроды могут быть электродами I и П рода.

Электроды I рода обратимы относительно ионов одного вида (металлическая пластина, опущенная в раствор собственной соли Cu/CuSO4, Ni/NiSO4).

ЕCu0/Cu2+ = E0Cu0/Cu2+ + ℓg[Cu2+]

Часто используют электроды из серебра, ртути, кадмия, меди и некоторых других металлов. Хром, кобальт и ряд других не дают воспроизводимых результатов и электроды из этих металлов не применяются.

Для измерения окислительно-восстановительного потенциала системы применяются электроды из благородных металлов ― Pt, Au, Ir или графита.

К электродам I рода можно отнести водородный электрод, потенциал которого зависит от рН раствора.

Е = Е0 + ℓg[H]

Е = Е0 + рН

Наряду с электродами I рода существуют электроды П рода, потенциал которых определяется концентрацией соответствующих анионов. Такие электроды представляют собой пластину металла, покрытую труднорастворимой солью этого металла и опущенная в раствор соли, содержащей одноимённый ион.

К электродам П рода относятся хлорсеребряный, каломельный и др. Хлорсеребряный электрод изготавливают из серебряной проволоки, которую покрывают тонким слоем хлорида серебра, он помещён в раствор соли KCl.

Хлорсеребряный электрод: Ag│AgCl│KCl


EАg/Ag+ = ЕХ.С. + 0,059ℓg[Ag+] = EХ.С. + 0,059ℓg

Для измерения потенциала индикаторного электрода в анализируемый раствор погружают второй электрод, потенциал которого не зависит от концентрации определяемых ионов. Этот второй электрод называют электродом сравнения.

В качестве индикаторных электродов используют электроды двух типов.

Электродообменные, на межфазных границах которого протекают реакции с участием электронов.

Ионообменные, на межфазных границах которого протекают реакции сопровождающиеся обменом ионов. Такие электроды называют ион-селективными.

А). Ион-селективные электроды.

Ион-селективные электроды широко внедряются в практику химического анализа, применяются для определения самых разнообразных веществ. Они подразделяются на несколько групп:

а) Стеклянные электроды

б) Твёрдые электроды с гомогенной или гетерогенной системой.

в) Жидкостные электроды ( на основе ионных ассоциатов, хелатов металлов, нейтральных лигандов и тд.)

г) Газовые электроды

д) Электроды для измерения активности (концентрации) биологических веществ.

Ион-селективные электроды представляют собой электрохимические полуэлементы, у которых разность потенциалов на границе раздела фаз Электрод ― Электролит зависит от концентрации (активности) определяемого иона в растворе. Электродом обычно является твёрдая или жидкая мембрана, способная обмениваться ионами с анализируемым раствором.

Если ионы в раствор электролита проникают из мембраны, то её поверхность приобретает заряд, противоположный заряду перешедших в раствор ионов и на границе раздела фаз возникает потенциал, величина которого зависит от концентрации (активности) данных ионов в растворе.

Если мембрана разделяет два раствора с различной активностью, то потенциал определяется уравнением Нернста.

Е = Е0 + 0,059ℓg

а1 ― активность (концентрация) ионов в первом растворе

а11 ― активность (концентрация) ионов во втором растворе

Обычно в одном из растворов активность (концентрацию) сохраняют постоянной (чаще внутри мембраны).

Если а11 ― const, тогда:

Е = Е0 + 0,59 ℓgа1

Т.е. потенциал индикаторного ион-селективного электрода зависит только от активности ионов первого раствора.

Ион-селективные электроды находят широкое применение в практике физико-химического анализа.

С помощью их можно быстро провести анализ по определению многих ионов, даже тех, которые другими методами не определяются.

Существуют ион-селективные электроды для определения К+, Na+, Ba2+, Ca2+, Cu2+, NO3-, SO42-, PO43-, CN -, SCN -.

Главным достоинством ион-селективных электродов является высокая избирательность определения.

Чувствительной частью ион-селективного электрода является мембрана, которая разделяет два раствора, находящихся в контакте, на внутренний и внешний, поэтому электроды называются мембранными.

Существуют различные классификации ион-селективных электродов, но наиболее удобна классификация по виду мембраны:

1 Электроды с твёрдой мембраной.

а) Стеклянные

б) С кристаллической мембраной

в) С плёночной мембраной

2. Электроды с жидкой мембраной.

3. Специальные электроды ― газовые, ферментативные и др.

В потенциометрии в качестве индикаторных обычно применяют мембранные (ион-селективные) электроды. Через мембрану возможно перемещение ионов одного вида, активность ионов внутри мембраны постоянна.

Среди ион-селективных электродов наибольшее распространение получил стеклянный электрод, предназначенный для измерения рН. Устройство его довольно простое ― включает стеклянную трубку с шариком на конце. Шарик изготовлен из специального стекла, обладающего повышенной электропроводностью и заполнен стандартным раствором ― 0,1 М раствором HCl с добавками KCl или NaCl. Токоотводом служит хлор-серебряный электрод ― серебряная проволока, покрытая хлоридом серебра, к которой припаян изолированный провод.

Шарик имеет толщину стенок 0,06-0,1 мм, изготовлен из стекла состава - 64% SiO2

-                                                  28% Na2O

-                                                  8% MgO

Внутри стеклянной трубки помещена серебряная проволочка, покрытая труднорастворимой солью серебра AgCl, защищенная стеклянным кожухом.

Ag, AgCl | HCl(0,1 M) || стекло || исследуемый раствор.

Перед применение стеклянного электрода для определения рН ― его вымачивают в 0,1 М растворе HCl. В результате этой операции происходит обмен ионов.

Ионы водорода из раствора кислоты обмениваются на ионы натрия в стекле шарика и на границе стекло кислота устанавливается равновесие:


Н+  Na+

В таком состоянии электрод готов к работе.

Потенциал стеклянного электрода обусловлен обменом ионов щелочных металлов, находящихся в стекле с ионами водорода раствора.

Концентрация ионов водорода на внутренней поверхности стеклянной мембраны находится в равновесии с внутренним раствором HCl и на границе мембрана ― внутренний раствор устанавливается равновесный потенциал (Е1).

При погружении стеклянного электрода в исследуемый раствор ионы водорода начинают перемещаться через стекло шарика (мембрану) из раствора с большой активностью, при этом на границе мембрана ― внешний раствор возникает равновесный потенциал (Е2).

Разность этих потенциалов даёт общий потенциал стеклянного электрода:

Ест. = Е1 + Е2

Электродная реакция на стеклянном электроде сводится к обмену ионами водорода между раствором и стеклом:


Н+(р-р) Н+(стекло)

Т.е. она не связана с переходом электронов. Ионы водорода на поверхности внешней стороны мембраны находятся в равновесии с ионами водорода в исследуемом растворе и на границе раздела возникает потенциал.

Е1 = Е10 + ℓn

Где: ан+(х) ― активность ионов водорода в исследуемом растворе.

а` н+ (1) ― активность ионов водорода на внешней поверхности мембраны.

Аналогично на границе раздела внутренней поверхности мембраны возникает потенциал:

Е2 = Е20 + ℓn

Где: ан+(2) ― активность ионов водорода во внутреннем растворе

 а` н+ (2) ― активность ионов водорода на внутренней поверхности мембраны.

Суммарный потенциал стеклянного электрода:

Ест = Е1 – Е2 = Е10 – Е20 + ℓn

При постоянных значениях:

а` н+ (1) ― активность ионов водорода на внешней поверхности мембраны

а` н+ (2) ― активность ионов водорода на внутренней поверхности мембраны

ан+(2) ― активность ионов водорода во внутреннем растворе

Уравнение принимает вид:

Ест = const + ℓn ан+(х)

Т.е. потенциал мембраны характеризует рН исследуемого раствора.

Или Ест = const + 0,059ℓgСн+

Величина const зависит от природы вспомогательного электрода сравнения, природы внутренного раствора и др.

При определении рН, с использованием стеклянного электрода в паре с каломельным ― измеряют ЭДС цепи:

Hg, Hg2Cl2│KCl│ ан+(х)│стекло│HCl│AgCl, Ag

ЭДС цепи Е = Е1 – Е2

Е1 = Е0 Hg2Cl2/Hg – 0,059ℓg aCl-(1) – 0,059ℓg aн+(х)

Е2 = Е0 АgCl/Аg – 0,059ℓg aCl-(2) – 0,059ℓg aн+(cт)

Е = [Е0 Hg2Cl2/Hg - Е0 АgCl/Аg + 0,059ℓg + 0,059ℓg H+(ст) – 0,059ℓg aH+|(x) = Eст – 0,059ℓп ан+(х)

Стеклянные электроды обладают рядом достоинств:

а) Широкий диапазон значений рН (от 0 до 13), который можно измерять стеклянным электродом.

б) Быстрота достижения равновесия и простота работы.

в) Возможность использовать электрод в присутствии окислителей, восстановителей, коллоидных растворов и пр.

Одним из недостатков стеклянного электрода является его хрупкость.

Другим недостатком ― является искажение результатов, если рН внутреннего раствора близок к рН исследуемого.

Сухие электроды очень слабо реагируют на изменение рН анализируемого раствора, поэтому перед началом измерений сухие электроды необходимо выдержать в соответствующем буферном растворе, после этого провести калибровку электрода, сверяя показания потенциала на приборе с известной рН. Выпускаемые стеклянные электроды для измерения рН (ЭСЛ - 11Г –0,5, ЭСЛ – 41Г – 0,4, ЭСЛ – 63 – 0,7, ЭСЛ – 43 – 07) пригодны для измерения рН в интервале от 0 до 14. Выпускаются стеклянные электроды для измерения активности щелочных металлов, например, ЭСNА – 51 – 7 для ионов Na+ и ЭСЛ – 91 – 07 ― для ионов К+.

К электродам с твёрдой мембраной относятся электроды с кристаллической мембраной, когда в качестве мембраны используют моно – или поликристаллы труднорастворимых в воде солей с ионным характером.

 1 ― мембрана

 2 ― корпус электрода

 6 3 ― внутренний раствор (0,1 М р-р

 определяемого иона и KCl)

 4 ― внутренний полуэлемент Ag/AgCl

 5 5 ― место припоя

 4 6 ― экранированный провод


 3

 2


1

Самый чувствительный участок электрода ― мембрана. Перенос заряда в кристаллической мембране происходит за счёт дефектов кристаллической решётки ― ионы перемещаются в пустующие узлы решётки.

Если мембрана неоднородна, гетерогенна ― в ней активный компонент ― кристалл внедрён в инертный связующий материал ― полиэтилен, эпоксидную смолу и т.д.

Твёрдым ион-селективным электродом является фтористый электрод, в котором монокристалл LaF3 является мембраной, чувствительность такого электрода позволяет измерять концентрацию F от 10 –6 до 1 м/л.

Ион-селективный электрод с мембраной из сульфида серебра для измерения ионов Ag+ и S2-. Электроды на основе сульфида серебра с добавкой соответствующего галогенида серебра позволяют измерять Cl -, J -, Br -, CN и др. Введение в сульфид серебра сульфидов других металлов позволяет получить электрод, чувствительный к ионам металлов, внесённых со вторым сульфидом (Cd2+, Pb2+, Cu2+).

Широкое применение получают твёрдые электроды с плёночной мембраной. В таких мембранах тонкоизмельчённое активное вещество ― кристаллы ― заключено в неэлектропроводную матрицу, изготовленную из полистирола, агар-агара, каучука, полиэтилена, эпоксидной смолы и др. В качестве активного вещества применяют соли ― галогениды, сульфиты, оксалаты и др.

Конструкция электродов с плёночной мембраной аналогична конструкции электродов с кристаллической мембраной, только вместо мембраны вклеена матрица, а внутрь электрода залит раствор сравнения 0,1 м KCl и 0,1м соли измеряемого иона (для нитрат-селективного ― нитрат калия, для фторид-селективного ― фторид натрия и т.д.).

Перед работой плёночные пластифицированные электроды вымачивают в анализируемом растворе в течение суток. К электродам с плёночной мембраной относится нитрат-селективный электрод ― ЭМ – NO3 – 01.

В настоящее время широко применяются электроды с жидкой мембраной. В электродах с жидкой мембраной раствор сравнения отделён от анализируемого тонким слоем органической жидкости, содержащей жидкий ионит, не смешивающийся с водой, но селективно реагирующий с определяемым ионом. Жидкие мембраны готовят из жидких или твёрдых ионитов или их растворов в подходящих органических растворителях, не смешивающихся с водой и могут быть катионными, анионными и нейтральными.

Существуют катионные жидкие мембраны на Са2+, Ва2+, Zn2+, Pb2+, Cu2+, Sb3+, изготовленные на основе высокомолекулярных кислот и из волей.

Анионные жидкие мембраны изготавливают на основе аминов и четвертичных аммониевых оснований.

Нейтральные жидкие мембраны могут быть изготовлены на основе органических соединений, способных связывать катионы щелочных и щелочноземельных металлов.

В качестве растворителей обычно используют эфиры, например, октиловый или дециловый эфир фосфорной кислоты, дибутилфосфат и др. в электродах этого типа возникновение потенциала на границе раздела фаз обусловлено ионным обменом, связанным с различием констант распределения между жидкой и органической фазами. Ионная селективность достигается за счёт различия в константах распределения, устойчивости комплексов и различной подвижности определяемого и мешающего ионов в фазе мембраны.

Потенциал-образующими ионами являются катионы или анионы ионных ассоциатив, т.е. электрод с катионно-анионным ассоциатом чувствителен и к катионам и к анионам, входящим в состав ассоциата. При применении мембраны для определения анионов селективность анионочувствительных электродов распределяется таким образом:

ClO4- > SCN - > J - > BF4- > NO3- > Br - > Cl - >J

На основании этого ряда можно установить возможность определения одного из ионов в присутствии других. Например, открытию нитрат ионов (NO3-) мешают все анионы, стоящие в этом ряду влево от него и не мешают те, которые расположены вправо от него.

Устройство ион-селективного электрода с жидкостной мембраной довольно простое.

Электрод с жидкостной мембраной.

В резервуаре 2 находится ионочувствительная жидкость, органического ионита, пропитывающая мембрану. Органический ионит имеет основные, кислотные или хелатообразующие функциональные группы, растворяется в подходящем растворителе, которые не смешиваются с водой.

Для определения кальция (Са2+) в качестве жидкого ионита берут кальциевую соль алкилфосфорной кислоты RСu(O)2PO, растворённую в диалкилфенилфосфонате (R2C6H5PO) или аналогичном компоненте. В качестве раствора сравнения внутреннего серебряного электрода применяют CaCl2, в котором [Ca2+] постоянно и потенциал электрода будет зависеть только от концентрации иона Са2+ в анализируемом растворе. При этом с каждой стороны ион-селективной мембраны устанавливается равновесие.

СаR2(орг ↔) ↔ 2R(орг) + Са2+воды и Е = Е0мембр. 0 0,0291 ℓg[Ca2+]

Такие электроды имеют чувствительность 10 –5 – 1 м/л в области рН 6,0 до 11,0. В практике применяют ион-селективные мембранные электроды на ионы К+, Na+, NH4+ и некоторые другие.

Электроды с газовой мембраной позволяют определить содержание газов при анализе почвы, морской и речной воды, биологических жидкостей, промышленных газов, выхлопов и т.д.

Действие электродов основано на взаимодействии газов с водой и образованием ионов:


CO2 + H2O ↔ HCO3- + H+

SO2 + H2O ↔ HSO3- + H+

H2S + H2O ↔ HS - + H+

NH3 + H2O ↔ NH4+ + OH

Анализ сводится к определению образовавшихся в растворе ионов Н+ или ОН -, определению рН. Для работы собирают гальванический элемент, где в качестве индикаторного электрода стеклянный электрод, а в качестве электрода сравнения ― хлорсеребряный. Оба электрода помещают в жидкость с растворённым газом и определяют ЭДС элемента.

Сосуд, в котором происходит растворение газа имеет газопроницаемую мембрану, проходя через неё, газ растворяется и с помощью электродов определяется концентрация обращающихся ионов в растворе.

Ион-селективные электроды служат в качестве индикаторных и они отличаются большой чувствительностью. Предел обнаружения ионов с их помощью 10 –5 – 10 –7 м/л (иногда до 10 –19 м/л), минимальное количество пробы для одного определения 0,05 – 1 мл. Они отличаются высокой селективностью, особенно мембранные электроды.

В). Коэффициент селективности

Мембранные электроды проявляют селективность по отношению к ионам одного вида, концентрацию которых можно измерить в присутствии других ионов, не входящих в состав мембраны. Важной характеристикой ион-селективных электродов является его коэффициент селективности, который показывает, во сколько раз электрод более чувствителен к данным ионам, чем к посторонним (мешающим). Например, коэффициент селективности натриевого электрода по отношению к ионам калия составляет 1000, т.е КсNa+/K+ = 1000, это значит, что данный электрод в 1000 раз чувствительнее к ионам Na, и если он имеет потенциал Е при [Na+] = 10 –3моль/л, то для достижения такого же потенциала потребуется [K+] = 1 моль/л. мембранные электроды проявляют селективность по отношению к ионам одного вида, концентрацию которых можно измерять в присутствии посторонних ионов, не входящих в состав мембраны. Селективность мембраны в этом случае зависит от способности ионов мембраны обмениваться с посторонними ионами раствора. Например, если в мембране содержатся иона Са2+, а в растворе кроме них ещё и посторонние Sr2+, то селективность мембраны по отношению с Са2+ характеризуется степенью возможности обмена:

 Sr2+ + Ca2+ → Sr2+ + Ca2+

Раствор мембрана мембрана раствор

Кр =  >

Найдём Кр, чем больше Кр, т.е. чем больше равновесие сдвинуто вправо, тем меньше селективность.

Селективность зависит также от соотношения подвижностей Sr2+ и Са2+ в мембране и уменьшается с увеличением этого соотношения.

 ŪСа2

КСа2/Sr2+ = ——— = Кр

ŪSr2+

 

ŪСа2 и ŪSr2+ — подвижность ионов Са2+ и Sr2+ в мембране

Кр — константа равновесия реакции обмена в мембране.

Это соотношение представляет коэффициент селективности иона Са2+ по отношению к иона Sr2+, который является количественной мерой чувствительности электрода к двум ионам. Потенциал ион-селективного электрода зависит от концентрации определяемого иона в растворе, и он всегда играет роль индикаторного электрода.


Информация о работе «Методы химического анализа»
Раздел: Промышленность, производство
Количество знаков с пробелами: 242525
Количество таблиц: 34
Количество изображений: 27

Похожие работы

Скачать
12646
7
0

... (рв) - на миллиард частей; - кг/м³, г/см³, моль/дм³, кг/т и др. Выражение концентрации через рm, ррm, рв используют в основном в фармацевтике (аптекарском деле). В количественном химическом анализе наиболее часто используют массовую, молярную и процентную концентрации. В качестве массовой концентрации широко применяется титр раствора. Различают “обыкновенный (простой)” и “ ...

Скачать
12056
0
0

... понимают совокупность тел, находящихся во взаимодействии между собой и отдельных от окружающей среды. Система называется термодинамической, если между ее отдельными частями возможен обмен энергией. Если возможен обмен не только энергией, но и веществом, то такая система называется физико-химической. Пример – насыщенный раствор соли с некоторым избытком твердой соли на дне и паром над ним. В ...

Скачать
17962
0
0

... каротин, ксантофилл, ликопин, лютеин. Витамины имеют высокую физиологическую активность, сложное и разнообразное химическое строение. Они необходимы для нормального роста и развития организма. Витамины регулируют окисление углеводов, органических кислот, аминокислот, некоторые из которых входят в состав НАД, НАДФ. Биосинтез витаминов свойственен преимущественно зелёным растениям. В животных ...

Скачать
13664
1
0

... прибора «Ионометр универсальный ЭВ-74». Дата сбора дождевой воды рН Направление ветра 3. 10. 2004 7 западное 5. 10. 2004 6.3 северо-западное 24.10.2004 6.6 северо-западное 2.2.Качественный анализ дождевой воды. Для проведения качественных реакций на различные ионы отбирали некоторое количество исследуемой дождевой воды, и, создавая нужные условия, добавляли необходимый ...

0 комментариев


Наверх