Молярный коэффициент светопоглощения

Методы химического анализа
Общие сведения о методах анализа состава и измерения параметров продукции Классификация физико-химических методов анализа Электрохимические методы анализа Особенности физико - химических методов аналитического контроля Сигнал как информативная функция состава вещества Косвенные измерения Автоматизированные системы аналитического контроля Чувствительный элемент датчика автоматического анализатора Требования, предъявляемые к приборам аналитического контроля Оптические методы анализа Молекулярный спектр Классификация оптических методов анализа Основной закон светопоглощения — закон Бугера – Ламберта – Бера Молярный коэффициент светопоглощения Приводит концентрацию к системе моль/л Взаимодействие света с дисперсными гетерогенными системами Роль химической реакции, используемой в фотометрическом анализе Классификация приборов для фотометрических измерений Теоретические основы метода Электрохимические методы анализа Кондуктометрические методы анализа R — сопротивление - ом Метод осаждения Полумикробюретку заполнить рабочим раствором и установить над сосудом для титрования Потенциометрические методы анализа Электроды, применяемые в потенциометрических методах анализа Прямая потенциометрия – ионометрия Хроматография Фронтальная хроматография Теоретические основы хроматографии Сочетание газовой хроматографии с другими инструментальными методами (ИК-спектроскопией и др.) Жидкостная хроматография Распределительная хроматография
242525
знаков
34
таблицы
27
изображений

3.5.2 Молярный коэффициент светопоглощения

Молярный коэффициент светопоглощения отражает индивидуальные свойства вещества (окрашенного) и является их характеристикой. Для разных веществ он имеет различную величину. У слабоокрашенных веществ (например, хромат калия) молярный коэффициент светопоглощения составляет 400 – 500, а у сильноокрашенных (например, дитизонат цинка) - 94 000.

Следует иметь в виду, что значение молярного коэффициента поглощения, как правило, не превышает значения 100 000 – 120 000 для наиболее интенсивно окрашенных соединений. Его значение определяется экспериментально спектрофотометрическими методами.

Молярный коэффициент светопоглощения является характеристикой чувствительности фотометрических реакций, чем больше его величина, тем чувствительнее и точнее определение. При выборе реактивов, дающих цветовую реакцию с определяемым веществом, выбирают тот, который образует соединения с максимальным коэффициентом светопоглощения.

Из закона Бугера–Ламберта–Бера вытекают два вывода, которые имеют практическое значение.

Первый вывод. При одинаковой интенсивности окраски одного и того же вещества их концентрации обратно пропорциональны толщине поглощающих слоёв.

Доказательство. Предположим, что имеются два раствора одного и того же вещества, но с разной концентрацией. Согласно закону Бугера-Ламберта-Бера (см. выражение 3.11) оптическая плотность (Д) каждого раствора может быть представлена следующими математическими выражениями:

ℓg = εL1C1 ℓg = εL2C2

Принимая во внимание, что исследуемые растворы одинаково освещены, т. е. на них воздействует световой поток интенсивностью равной J0. Выравнивание световых потоков (J1 = J2), прошедших через растворы может быть достигнуто подбором толщин просвечиваемых растворов L1 и L2. Исходя из этого, имеют место следующие равенства:

ℓg = ℓg следовательно εL1C1 = εL2C2, а так как ε1 = ε2 тогда L1C1 = L2C2.

Таким образом — при одинаковой интенсивности окраски одного и того же вещества их концентрации обратно пропорциональны толщине поглощающих слоёв.

Второй вывод. При условии равенства толщин исследуемого раствора и стандартного раствора одного и того же вещества (L1 = L2) зависимость между их оптической плотностью и концентрацией прямопропорциональна:


 =

Оптическая плотность раствора, содержащего несколько окрашенных веществ, обладает свойством аддитивности, которое называют законом аддитивности светопоглощения (аддитивность-лат. additio прибавление-результат получаемый путём сложения). В соответствии с этим законом поглощение света, каким - либо веществом не зависит от присутствия в растворе других веществ, так как каждое из окрашенных веществ будет вносить свою величину в экспериментально определяемую оптическую плотность — Д.

Д = Д1 + Д2 + Д3, т. к. L-const, то имеет место сумма (ε1C1 + ε2C2 + ε3C3)

3.5.3 Спектры поглощения

Все окрашенные соединения характеризуются избирательным поглощением света.

Для характеристики окрашенных растворов различных окрашенных соединений пользуются их спектрами поглощения — кривыми светопоглощения, которые определяют зависимость оптической плотности Д или молярного коэффициента поглощения ε от длины волны λ или частоты γ

Д = f(λ) Д = f(γ)

ε = f(λ) ε = f(γ)

Для получения такого спектра (кривой светопоглощения) в таких координатах — проводят серию измерений оптической плотности или молярного коэффициента светопоглощения при различных длинах волн, измерение проводится вначале через 10 – 20 нм, а после границы максимума измеряют через 1 – 2 нм.

Поглощение света измеряют в оптическом диапазоне спектра в ультрафиолетовой (185 – 400 нм), видимой (400 – 760 нм) и инфракрасной (760 – 1000 нм) областях спектра. Кривые светопоглощения снимают с помощью спектрофотометров, рис 3.3.

У окрашенных веществ максимум поглощения света, в большинстве случаев, находится в видимой области спектра (≈ 500 нм), но не может быть смещен в ультрафиолетовую область (K2CrO4), а также может смещаться и в инфракрасную — (CuSO4).

Спектры поглощения позволяют выбрать оптимальную длину волны для аналитических измерений. Максимуму спектра поглощения соответствует максимальное значение молярного коэффициента поглощения — Еmax, т.е. максимальной чувствительности.

 Д 3

 1,4 max

 —

 —

 1,0 — 1

 —

 —

 —

 — 2

  • • • • • •

 0 100 200 300 400 500 λ

Рис. 3.3. Спектры поглощения водных растворов хромата (1), дихромата (2) и перманганата (3) калия

Величина Д = ℓg характеризует поглощательную способность вещества, называемую поглощением или светопоглощением — эту величину снимают со шкалы прибора при аналитических определениях. Иногда шкала колибруется на пропускание — Т, %.

Между оптической плотностью Д и пропусканием Т существует связь, выражение 3.14.

Т =  · 100  =  

ℓg = ℓg100 - ℓgТ ℓg = Д Д = ℓg100 - ℓgТ = 2 - ℓgT

Д = 2 - ℓgT (3.14)

Зависимость оптической плотности от концентрации выражается графиком, рис.3.2.

Тангенс угла наклона (α) градуировочного графика к оси (С) указывает на чувствительность метода. Чем больше угол наклона к оси концентрации градуировочного графика, тем более чувствителен метод определения.

На основании закона Бугера – Ламберта – Бера можно определить нижнюю границу диапазона содержания определяемых веществ (Сmin)

Дmin = Eλ · L · Cmin, если L = 1 см Сmin =

Использование закона Бугера – Ламберта – Бера позволяет проводить различные расчёты на основании фотометрических измерений и определений.

Пример: Вычислить молярный коэффициент поглощения железа в растворе, содержащем 0,0028 г Fe в 500 мл раствора, при L = 4 см, если Д = 0,28.


Информация о работе «Методы химического анализа»
Раздел: Промышленность, производство
Количество знаков с пробелами: 242525
Количество таблиц: 34
Количество изображений: 27

Похожие работы

Скачать
12646
7
0

... (рв) - на миллиард частей; - кг/м³, г/см³, моль/дм³, кг/т и др. Выражение концентрации через рm, ррm, рв используют в основном в фармацевтике (аптекарском деле). В количественном химическом анализе наиболее часто используют массовую, молярную и процентную концентрации. В качестве массовой концентрации широко применяется титр раствора. Различают “обыкновенный (простой)” и “ ...

Скачать
12056
0
0

... понимают совокупность тел, находящихся во взаимодействии между собой и отдельных от окружающей среды. Система называется термодинамической, если между ее отдельными частями возможен обмен энергией. Если возможен обмен не только энергией, но и веществом, то такая система называется физико-химической. Пример – насыщенный раствор соли с некоторым избытком твердой соли на дне и паром над ним. В ...

Скачать
17962
0
0

... каротин, ксантофилл, ликопин, лютеин. Витамины имеют высокую физиологическую активность, сложное и разнообразное химическое строение. Они необходимы для нормального роста и развития организма. Витамины регулируют окисление углеводов, органических кислот, аминокислот, некоторые из которых входят в состав НАД, НАДФ. Биосинтез витаминов свойственен преимущественно зелёным растениям. В животных ...

Скачать
13664
1
0

... прибора «Ионометр универсальный ЭВ-74». Дата сбора дождевой воды рН Направление ветра 3. 10. 2004 7 западное 5. 10. 2004 6.3 северо-западное 24.10.2004 6.6 северо-западное 2.2.Качественный анализ дождевой воды. Для проведения качественных реакций на различные ионы отбирали некоторое количество исследуемой дождевой воды, и, создавая нужные условия, добавляли необходимый ...

0 комментариев


Наверх