3.5.1 Основной закон светопоглощения — закон Бугера – Ламберта – Бера
Атом, ион или молекула вещества, поглощая квант света, переходит в более высокое энергетическое состояние. Обычно это — переход с основного, невозбуждённого уровня на один из более высоких уровней, чаще всего на первый возбуждённый уровень.
Если часть излучения поглощается веществом, то интенсивность излучения, по мере прохождения через слой вещества, падает.
Закон Бугера – Ламберта – Бера — основной закон светопоглощения связывает уменьшение интенсивности света, прошедшего через слой светопоглощающего вещества с толщиной его слоя и концентрацией в растворе.
Механизм поглощения монохроматического излучения, проходящего через стеклянный сосуд с раствором, проиллюстрирован на рис. 3.1.
J0 Jn J
Рис. 3.1. Прохождение света через раствор, заключённый в стеклянный сосуд
При прохождении светового потока J0 через слой раствора, заключённого в сосуд, его мощность ослабляется. К факторам, влияющим на ослабление светового потока, относятся:
отражение стенками сосуда - Jотр ;
поглощение окрашенным раствором - Jп;
рассеивание взвесями, содержащимися в растворе - Jр. Мощность выходящего из сосуда пучка света всегда будет меньше на величину потерь ( Jотр + Jп + Jр ), выражение 3.7.
J = J0 – ( Jотр + Jп + Jр ) (3.7)
Ослабление светового потока происходит главным образом за счёт поглощения световой энергии раствором. В лабораторной практике при изучении поглощения света растворами пользуются одинаковыми кюветами, для которых мощность отражённой части светового потока заведомо известна, как правило, постоянна и настолько мала, что ею пренебрегают. При работе с истинными растворами достаточно чистых веществ потери мощности света за счёт рассеяния также незначительны, поэтому выражение 3.7 может быть записано более упрощённо (выражение 3.8).
J = J0 - Jп 3.8
Мощность падающего светового потока J0 и прошедшего через раствор светового потока J могут быть измерены экспериментальным путём. Величина потерь рассчитывается по выражению 3.9.
J / J0 = Т (3.9)
Отношение J / J0 указывает на степень пропускания раствором светового потока и называется прозрачностью, а иногда пропусканием раствора. Коэффициент Т показывает, какая доля светового потока прошла через раствор, и принимает значение от 0 до 1.
Чем больше поглощается световой поток, тем меньше J по сравнению с J0, тем больше величина коэффициента Т.
Величина обратная прозрачности (выражение 3.10) называется непрозрачностью или поглощением раствора. Отношение мощности света, поглощенного раствором, к мощности падающего света ( Jn / J0 ), называется поглощающей способностью.
1 / Т = J0 / J (3.10)
Логарифмированием выражения 3.10 рассчитывается оптическая плотность раствора (выражение 3.11). Она показывает степень поглощения излучения в зависимости от толщины слоя раствора и его окраски.
ℓg J0 / J = Д = ℓg пL = L ℓg n , (3.11)
где: L – толщина поглощающего слоя;
ℓg n – постоянная величина, характерная для конкретного окрашенного раствора при прохождении через него света определённой длины;
Д – оптическая плотность (эту величину также называют абсорбционностью).
Выражение 3.11 отражает закон Бугера – Ламберта: слои вещества одинаковой толщины при прочих равных условиях всегда поглощают одинаковую долю падающего на них светового потока. Оптическая плотность вещества прямо пропорциональна толщине поглощающего слоя.
Позднее Бером было установлено, что поглощение света газами и растворами зависит от числа частиц в единице объёма, встречающихся на пути светового потока, т. е. от концентрации вещества в исследуемом растворе.
Закон Бугера – Ламберта – Бера устанавливает зависимость интенсивности поглощения света от концентрации вещества в растворе (С), толщины светопоглощающего слоя раствора(L) и молярного коэффициента поглощения света ( ε). Математическое выражение оптической плотности может быть представлено выражением 3.12. Оно получено экспериментальным путём, правильность его подтверждается с помощью математического аппарата.
Д = ε L С (3.12)
Объединённый закон Бугера – Ламберта – Бера является основным законом поглощения света растворами, он трактуется следующим образом: оптическая плотность раствора зависит от концентрации и природы исследуемого вещества, а также толщины слоя раствора, через который проходит световой поток (поток электромагнитных колебаний).
Для наглядности зависимость оптической плотности от концентрации вещества в растворе принято выражать графически, рис. 3.2. Она представлена прямой линий, идущей из начала координат и соответствует уравнению
D = k C ,где k = ε L ,а ε = k / 2,3.
Молярный коэффициент светопоглощения представляет оптическую плотность одномолярного раствора при толщине слоя светопоглощающего раствора 1 см.
ε = Д / LС (3.13)
Если С = 1 моль/л, L = 1 см, то Д = ε
Величина молярного коэффициента поглощения ε:
зависит - от длины волны проходящего света, температуры раствора и природы растворённого вещества;
не зависит - от толщины поглощающего слоя и концентрации растворённого вещества.
Д
α
Д3
tgα = ε
Д2
Д1
C1 C2 C3 C
Рис. 3.2. Зависимость оптической плотности от концентрации вещества
... (рв) - на миллиард частей; - кг/м³, г/см³, моль/дм³, кг/т и др. Выражение концентрации через рm, ррm, рв используют в основном в фармацевтике (аптекарском деле). В количественном химическом анализе наиболее часто используют массовую, молярную и процентную концентрации. В качестве массовой концентрации широко применяется титр раствора. Различают “обыкновенный (простой)” и “ ...
... понимают совокупность тел, находящихся во взаимодействии между собой и отдельных от окружающей среды. Система называется термодинамической, если между ее отдельными частями возможен обмен энергией. Если возможен обмен не только энергией, но и веществом, то такая система называется физико-химической. Пример – насыщенный раствор соли с некоторым избытком твердой соли на дне и паром над ним. В ...
... каротин, ксантофилл, ликопин, лютеин. Витамины имеют высокую физиологическую активность, сложное и разнообразное химическое строение. Они необходимы для нормального роста и развития организма. Витамины регулируют окисление углеводов, органических кислот, аминокислот, некоторые из которых входят в состав НАД, НАДФ. Биосинтез витаминов свойственен преимущественно зелёным растениям. В животных ...
... прибора «Ионометр универсальный ЭВ-74». Дата сбора дождевой воды рН Направление ветра 3. 10. 2004 7 западное 5. 10. 2004 6.3 северо-западное 24.10.2004 6.6 северо-западное 2.2.Качественный анализ дождевой воды. Для проведения качественных реакций на различные ионы отбирали некоторое количество исследуемой дождевой воды, и, создавая нужные условия, добавляли необходимый ...
0 комментариев