2.3.3 Чувствительный элемент датчика автоматического анализатора
Чувствительный элемент является составной частью датчика применяемого анализатора и наиболее важной частью автоматизированной системы контроля технологической среды. Он представляет собой устройство, способное генерировать информацию, полученную от его физического или физико-химического взаимодействия с технологической средой.
К основным требованиям, предъявляемым к чувствительному элементу, относятся:
высокая параметрическая чувствительность к изменению концентрации определяемого компонента;
избирательность, быстродействие, стабильность работоспособности и коррозионная стойкость к анализируемой среде;
доступность и простота регенерации;
надёжность в работе;
удобство обслуживания.
Взаимодействие чувствительного элемента с анализируемой средой может осуществляться прямым контактом или через перегородки.
Прямой контакт чувствительного элемента с технологической средой используется в электрохимических, тепловых, радиоизотопных, газодинамических и других анализаторах. Датчик этих анализаторов монтируется непосредственно в местах автоматизированного контроля среды, которая воздействует непосредственно на чувствительный элемент.
Перегородки применяются для пропускания только того материального потока анализируемой технологической среды, который должен оказывать воздействие на чувствительный элемент. Например, к таким потоком относятся:
поток воздуха эквивалентный давлению анализируемой среды на эластичную мембрану в анализаторах плотности;
световой поток через оптически прозрачные перегородки в оптико- акустических анализаторах;
тепловой поток через защитную стеклянную оболочку в термокондуктометрических анализаторах химически агрессивных сред.
Могут применяться перегородки при контроле технологической среды, включающей несколько фаз. В этом случае возникает необходимость выделения фазы из потока технологической среды, которая характеризует её параметры.
Независимо от того, как будет взаимодействовать чувствительный элемент с анализируемой средой, её физическое состояние должно оставаться постоянным. Однако для предотвращения появления нарушений в его параметрической чувствительности необходимо исключить влияние физических параметров окружающей среды – температуры, давления, влажности воздуха, магнитных полей, производственных вибраций, статического электричества, шагового напряжения и др. Важнейшим условием полноценного его функционирования является поддержание в должном техническом состоянии коммуникаций с измерительным преобразователем и другой аппаратурой.
Обеспечение длительной эксплуатации чувствительного элемента в датчике анализатора и получение объективной информации о состоянии контролируемой технологической среды достигается обеспечением выполнения следующих требований:
1. Чувствительный элемент должен взаимодействовать только с представительной частью анализируемой среды;
2. Недопустима установка чувствительного элемента в застойной зоне контролируемой технологической среды;
3. Режим обтекания чувствительного элемента анализируемой средой, а также её температура и давление должны находиться в пределах определённых методикой контроля.
4. Поверхность контакта чувствительного элемента должна всегда оставаться чистой и неизменной во времени.
В зависимости от решаемых задач и структуры автоматизированной системы информация от чувствительного элемента через датчик передаётся на расстояние по специальным коммуникациям связи к приборам, где обрабатывается, при необходимости усиливается и отображается на индикаторе.
2.3.4. Структуры приборов автоматизированного аналитического контроля
В зависимости от исполнения аналитические приборы могут изготавливаться в виде единой конструкции и в виде комплекта, состоящего из различных блоков, каждый из которых выполняет определённую функцию: обработки, измерения, нормирования усиления и отображения измеренных величин.
Общий принцип работы аналитического прибора заключается в следующем Первым в измерительной цепи аналитического прибора размещается первичный измерительный преобразователь. К нему подведён определяемый физический параметр, зарегистрированный чувствительным элементом датчика. Физический параметр в первичном измерительном приборе преобразуется в выходной электрический сигнал. В последующих блоках сигнал соответствующим образом преобразуется (усиливается, нормируется, видоизменяется и т. д.) в удобную для контроля форму. Контролируется сигнал посредством измерения его величины с помощью применения электронных автоматических мостов и потенциометров.
Потребности практики химико- технологических производств удовлетворяются изготовлением жёстких и гибких структур приборов для автоматизированного аналитического контроля, рис.2.4.
Рис. 2.4. Классификация структур автоматизированных систем
К жёстким системам относятся следующие типы структур: одноканальная, дифференциальная (двухканальная), компенсационная.
Одноканальная структура обеспечивает непосредственный отсчёт параметров состава или свойств анализируемого вещества. В ней последовательно располагаются основные и вспомогательные элементы, участвующие в процессе контроля технологической среды, рис 2.5.
| |||
Рис. 2.5. Схема одноканальной структуры x-входные параметры (состав или свойства);
1-первичный измерительный преобразователь (ПИП);
y-выходной сигнал удобный для дальнейшего преобразования в системе;
2.-нормирующий преобразователь;
3.-вторичный прибор;
y1, y2-преобразованные во втором и третьем приборах сигналы.
Основным недостатком одноканальной структуры является отсутсвие управляющего воздействия. Это приводит к нарушению гибкости структуры по информативному каналу, что снижает её метрологические и эксплуатационные свойства .
Одноканальная структура (непосредственного отсчёта)исторически рассматривается как прообраз других структур.
Структура двухканальная дифференциального типа включает рабочий и сравнительный каналы, рис. 2.6.
Основное достоинство структур дифференциального типа состоит в том, что второй (сравнительный) канал позволяет повысить информационный уровень первого (рабочего) канала и снизить влияние помех на процесс контроля. Метрологические характеристики двухканальной структуры выше, чем у структуры непосредственного отсчёта.
Рис. 2.6. Схема двухканальной структуры дифференциального типа
1, 11 –первичный измерительный прибор;
2, 21 –нормирующий преобразователь;
3 –блок сравнения
4 –вторичный прибор.
Основными недостатками структуры являются: низкая скорость анализа и отсутствие управляющих воздействий , что снижает гибкость метода контроля.
Управляющие воздействия на процесс анализа реализуются в структурах аналитических приборов компенсационного типа, рис. 2.7.
В данной структуре реализован принцип компенсации. Он заключается в компенсации неизвестного значения информационного сигнала о составе или свойствах анализируемого вещества известным значением, полученным с помощью специальных средств. В момент компенсации отсчитывается значение информационного сигнала.
Эта структура превосходит по своим показателям предыдущие структуры, но не обеспечивает достаточную гибкость режимов контроля и управления. В целом гибкость определяется наличием следящих операционных систем, чем их больше, тем выше гибкость структуры.
7
7
Рис. 2.7. Схема структуры компенсационного типа
1, 11 –первичный измерительный прибор;
2, 21 –нормирующий преобразователь;
3 –блок сравнения;
4 –усилитель;
5 –блок управления;
6 –вторичный прибор;
7 –операционная система.
Повышение гибкости достигается за счёт внедрения в структуру аналитического прибора микропроцессорных средств, обеспечивающих автоматизацию процесса определения контролируемого свойства вещества или параметра его состава, а также проведение вычислительных операций.
Гибкая структура (рис.2.8) аналитического прибора позволяет учитывать влияние параметров окружающей среды на точность измерений и получать информацию о составе и свойствах анализируемых веществ в режиме реального времени.
Рис. 2.8. Обобщённая схема гибкой структуры аналитического прибора
1 –информационный канал;
х -входные параметры, определяющие состав и свойства анализируемых веществ;
2 –корректирующий канал;
х1 –входные параметры, которыми могут быть неконтролируемые компоненты анализируемых веществ;
3 –микропроцессорный блок.
Влияние параметров окружающей среды изучается в ходе разработки технологии или производства конкретной продукции и учитывается при создании методики её аналитического контроля. Полученные результаты реализуются в аналитических приборах с гибкой структурой проведения аналитического контроля.
... (рв) - на миллиард частей; - кг/м³, г/см³, моль/дм³, кг/т и др. Выражение концентрации через рm, ррm, рв используют в основном в фармацевтике (аптекарском деле). В количественном химическом анализе наиболее часто используют массовую, молярную и процентную концентрации. В качестве массовой концентрации широко применяется титр раствора. Различают “обыкновенный (простой)” и “ ...
... понимают совокупность тел, находящихся во взаимодействии между собой и отдельных от окружающей среды. Система называется термодинамической, если между ее отдельными частями возможен обмен энергией. Если возможен обмен не только энергией, но и веществом, то такая система называется физико-химической. Пример – насыщенный раствор соли с некоторым избытком твердой соли на дне и паром над ним. В ...
... каротин, ксантофилл, ликопин, лютеин. Витамины имеют высокую физиологическую активность, сложное и разнообразное химическое строение. Они необходимы для нормального роста и развития организма. Витамины регулируют окисление углеводов, органических кислот, аминокислот, некоторые из которых входят в состав НАД, НАДФ. Биосинтез витаминов свойственен преимущественно зелёным растениям. В животных ...
... прибора «Ионометр универсальный ЭВ-74». Дата сбора дождевой воды рН Направление ветра 3. 10. 2004 7 западное 5. 10. 2004 6.3 северо-западное 24.10.2004 6.6 северо-западное 2.2.Качественный анализ дождевой воды. Для проведения качественных реакций на различные ионы отбирали некоторое количество исследуемой дождевой воды, и, создавая нужные условия, добавляли необходимый ...
0 комментариев