5.1.2 Отливка двухслойных заготовок бочек валков на центробежной машине
Основным агрегатом для получения двухслойных бочек мелющего валка является центробежная машина с горизонтальной осью вращения формы, позволяющая отливать валки с бочкой диаметром до 0,5 м и длиной до 2,0 м.
Процесс отливки заготовок бочек мелющих валков на центробежной машине включает ряд подготовительных операций, от тщательности которых зависит качество будущего изделия.
Основными из этих операций являются следующие:
- сборка формы и заливочного устройства;
- заливка металла в установку центробежного литья. 5.1.2.1. Сборка формы и заливочного устройства
Сборка формы заключается в монтаже изложницы с двух ее торцев крышками. Изложница очищается металлической щеткой от остатков теплоизоляции и устанавливается на сборочную плиту, с предварительно очищенными посадочными местами, на которые устанавливается крышка.
Крышка закрепляется к изложнице клиньями.
После установки крышек изложница укладывается в контейнер для сушки и подогрева до 220.. .230°С
Подогретая изложница устанавливается на центробежную машину, после чего в нее вводится теплоизоляционная смесь при вращении с помощью специального устройства - пескосыпа.
Облицовочная смесь равномерно распределяется в процессе засыпки во вращающейся форме, обеспечивая толщину слоя, равную 0,002 м.
Для облицовки изложницы используется песчано-смоляная смесь (песок, смешанный со смолой) в следующей пропорции:
- 95% кварцевого песка марки КО 16;
- 5% связующей смолы сверх 100% типа СФП-011Л по ТУ 6-05-1370-90. Песчано-смоляная смесь наносится на внутреннюю поверхность
изложницы по ходу ее вращения при медленном повороте пескосыпа на 180°С и при частоте вращения формы 700 об/мин.
Продолжительность отверждения слоя смеси составляет 4 мин.
Заливочное устройство футеруется стандартными шамотными изделиями.
Концевая сифонная труба сбоку имеет прорезь длиной 200 мм и шириной 40 мм для обеспечения боковой заливки металла по ходу вращения формы.
Собранная воронка с подставкой окрашивается графитовой краской, сушится переносной горелкой, после чего заливочное устройство устанавливается на центробежную машину.
5.1.2.3 Заливка металла в установку центробежного литья
Температура металла перед выпуском из печи составляет 1480...1500°С
Выпуск металла осуществляется в подогретый до температуры 400°С поворотный ковш емкостью 1,0 т.
Перед заливкой металла берется проба на отбел. Величина отбела на пробе должна составлять 0,010...0,015 м.
Ковш с металлом с помощью крана подается к центробежной машине, счищается шлак с зеркала металла и при температуре 1350±10°С заливается через литниковую воронку в центробежную машину (рис. 5.1).
Продолжительность заливки металла рабочего слоя толщиной 0,04 м составляет 15 сек.
После выдержки продолжительностью 3 мин заливается второй слой металла из оставшегося в ковше чугуна, предварительно промодифицированного FeSi 75% из расчета получения содержания Si =1,5...1,7%.
Скорость заливки металла во вращающуюся форму составляет 160 н/сек.
После окончания процесса формирования бочки валка в форме производится поэтапное снижение частоты вращения изложницы с целью уменьшения вибрации машины до 800 об/мин, а затем до 400 об/мин через соответственно 13 и 14 мин с последующей остановкой вращения формы через 15 мин от начала заливки металла.
После перемещения защитного кожуха в нерабочее положение изложница извлекается из машины и устанавливается на стенд для окончательного остывания отливки.
При достижении на поверхности изложницы температуры Ю0...120°С производится разборка формы и извлечение отливки.
5.1.3 Разборка изложницы
Разборка изложницы производится при следующей последовательности операций:
- выбиваются клинья и снимаются обе крышки;
- изложница чалкой приподнимается над уровнем пола и отливка извлекается из изложницы;
- изложница укладывается на стенд для последующей сборки.
В соответствии с разработанной технологической документацией продолжительность изготовления одной заготовки бочки мелющего валка на центробежной машине составляет ~ 30 мин, включая продолжительность операции по установке формы на машину, перемещению защитного кожуха, нанесению теплоизоляционного покрытия, заливке металла, его кристаллизации во вращающейся форме, остановки формы, снятию крышки кожуха и извлечению заготовки из машины.
5.1.4 Механическая обработка бочек валка
После отливки бочка валка подвергается механической обработке для снятия припусков на внешней и торцевой поверхностях, вырезки темплета для оценки твердости и структуры металла, а также для расточки отверстий под запрессовку полуосей.
5.1.5 Механическая и термическая обработка полуосей
Заготовки полуосей изготавливают из стали 40Х по ГОСТ 4543-71, которые подвергаются термической обработке (закалка в масле при 840...860°С, отпуск при 560...570°С) для обеспечения твердости HRC 31...36.
Механическая обработка заготовки производится в соответствии с чертежом детали.
Запрессовка полуосей с торцев бочки
Полуоси запрессовываются в торцевые отверстия бочки в холодном состоянии на специальном прессе модели П6736 Одесского объединения «Прессмаш».
5.1.6 Окончательная механообработка валка
Окончательная механическая обработка мелющего валка состоит в шлифовке поверхности рабочего слоя бочки и посадочных поверхностей для установки в подшипниках согласно требованиям чертежа.
5.1.7 Балансировка валка
Балансировка валка осуществляется на специальном стенде, осуществляющим динамическую балансировку при скорости 7,67 сек".
Допускаемый дисбаланс у каждой из сторон бочки валка составляет 500 г-см.
5.1.8 Нарезка рифлей на поверхность рабочего слоя валков
Нарезка рифлей на поверхности бочки мелющего валка производится на специальном рифленарезном станке типа ТТ-43.
Микрошероховатость на рабочей поверхности мелющих валков, полученных по разработанной технологии, образуется в процессе их эксплуатации путем самовосстановления, благодаря рекомендованному химическому составу металла с повышенным содержанием фосфора (Р = 0,5...0,7%).
В этом случае валок для размольной системы помещается в мельницу без предварительной обработки в дробеструйной камере и в процессе помола приобретает микрошероховатую поверхность (рис. 5.3).
Такая технология позволяет сократить расходы на специальное оборудование для нанесения микрошероховатости на поверхность бочки валка и дополнительные трудозатраты.
Выводы по V главе
1. Показано, что по предложенному технологическому процессу получения мелющих валков, внедренному на ООО «Литейном заводе им. Медведева» прокатных валков.
2. Показано, что на основании результатов, полученных в настоящей работе, спроектирована и изготовлена новая конструкция центробежной машины для получения биметаллических валков, которая эксплуатируется в настоящее время в промышленных условиях
ОБЩИЕ ВЫВОДЫ
В процессе разработки технологии получения биметаллических заготовок валков для пищевого машиностроения, выявлены следующие особенности их производства, оказавшие решающую роль в повышении надежности и долговечности литых изделий с дифференцированной структурой:
1. Установлено, что применение массивной изложницы с облицованным покрытием, соизмеримой с толщиной стенки отливки (~ 130 мм) взамен тонкостенной (~ 40 мм), позволило существенно повысить ее аккумулирующую способность, снизить температурный перепад по отношению к отливке, повысить изотропность свойств рабочего слоя валка, полностью исключив появление дефектов в виде трещин.
2. Показано, что при заливке второго металла в период достижения на внутренней поверхности рабочего слоя средней температуры интервала ликвидус-солидус, можно обеспечить прочное сваривание металлов без употребления специального флюса.
3. Установлено, что при пульвербакелитовом покрытии толщиной 2,0 мм средняя скорость затвердевания металла рабочего слоя составляет 8 мм/мин и создаются условия для получения требуемой твердости и глубины отбела.
4. Выявлено, что при частоте вращения формы, которая соответствует значению гравитационного коэффициента К = 100 на внутренней поверхности заливаемого слоя металла, создаются условия для повышения физико-механических свойств заготовки вследствие ускоренного выравнивания угловых скоростей металла и изложницы.
5. Установлено, что применение заливочного устройства с боковой подачей жидкого чугуна по ходу вращения формы, сокращающей на 20...25% период вовлечения во вращение слоя металла до частоты вращения формы по сравнению с продольной заливкой, обеспечивает получение отливок с более однородной структурой и предотвращает появление окисных пленок в металле, спаев и других дефектов.
СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ
1. Бутковский В.А., Мерко А.И., Мельников Е.М. Технология зерноперерабатывающих производств. - М.: Колос, 1999. - 472 с.
2. Косов И.П. Состояние и перспективы развития мукомольно-крупяной промышленности России. - В сб.: Машиностроители – предприятиям хлебопродуктов. - М.: ИГШ, 2001. - с. 10... 14.
3. Бутковский В.А., Птушкина Г.Е. Технологическое оборудование мукомольного производства. - М.: ГП Журнал «Хлебопродукты», 1999. -208 с.
4. Зотьев А.И., Аронов А.Г., Петрухин И.П. Современные средства размола зерна. - М.: Колос, 1982. - 140 с.
5. Юкиш А.Е. Предприятиям хлебопродуктов - современное оборудование. - В сб.: Машиностроители — предприятиям отрасли хлебопродуктов. -М.: МПА, 2002. - с. 7...8.
6. Демский А.Б., Птушкина Г.Е., Борискин М.А. Комплектное оборудование мукомольных заводов. - М.: Агропромиздат, 1985. - 137 с.
7. Птушкина Г.Е., Товбин Л.И. Высокопроизводительное оборудование мукомольных заводов. - М.: ВО «Агропромиздат», 1987. - 190 с.
8. Соколов А.Я., Журавлев В.Д., Душин В.Н. и др. Технологическое оборудование предприятий по хранению и переработке зерна. - М.: Колос, 1984.-220 с.
9. Птушкин А.Т., Новицкий O.A. Автоматизация производственных процессов в отрасли хранения и переработки зерна.- М.: ВО «Агропромиздат», 1987. - 272
10. Бутковский В. А., Мельников Е.М. Технология мукомольного, крупяного и комбикормового производства. М.: ВО «Агропромиздат», 1989. - 199 с.
11. Кулак В.Г., Максимчук Б.М., Чакар А.П. Мукомольные заводы на комплектном оборудовании. - М.: Колос, 1984. — 95 с.
12. Будагьянц М.А., Карский В.Е. Литые прокатные валки. — М.: Металлургиздат, 1983.- 175 с.
13. Гималетдинов Р.Х. Производство прокатных валков из высококачественных чугунов. - М.: Полтекс, 2000. - 329
14. Стрижов Г.С, Карсский В.Е., Дорощенко П.П. и др. Центробежная отливка прокатных валков. - Литейное производство, № 4, 1969. —Филиппов А.С Разработка центробежного способа производства чугунных прокатных валков.
15. Гималетдинов Р.Х. Центробежная отливка крупнотоннажных прокатных валков. - Литейное производство, № 6,2000. - 37 с.
16. Мирзоян Г.С Исследование и разработка теоретических основ формирования и технологии производства крупногабаритных
17. Будагьянц Н.А. Исследование технологических параметров центробежной отливки валков. М.: Сталь, 1982. - С. 25...26.
18. Белай Г.Е., Белокопытов Г.М. Центробежное литье двухслойных валков. - Литейное производство, 1979. - С 33...34.
19. Рабинович Б.В. Введение в литейную гидравлику. - М.: Машиностроение, 1966.-423 с.
20. Лойцянский Л.Г. Механика жидкости и газа. - М.: Наука, 1970. - 904 с.
21. Цветненко К.У. Применение моделирования и метода подобия в центробежном литье. - Литейное производство, 1962, № 7. - 45 с.
22. Вейник В.И. Теория затвердевания отливки. - М.: Машгиз, 1962. -433
23. Глаголев В.А. Геометрические методы количественного анализа агрегатов под микроскопом. - Львов: Наука, 1960. - 264 с.
24. Гусятинская Н.С Современное состояние метрологического обеспечения измерений твердости металлов методом упругого отскока бойка (по Шору). - М.: ВНИИКИ, 1980. - 40 с.
25. Щербинский В.Г., Артемьев С.А., Самедов Я.Ю. Новые средства ультразвуковой дефектоскопии металлопродукции и оборудования. — Металлург, № 10, 2002. - С. 44...47.
26. Машиностроение. Энциклопедия, под ред. Фролова К.В. Том 11-12. -М.: «Машиностроение», 2001. - 784 с.
27. Баландин Г.Ф. Основы теории формирования отливки. 4.1. - М.: «Машиностроение», 1979.-325 с.
28. Куманин И.Б. Литейные свойства сплавов. - Литейное производство, 1980,№2.-С3...6.
29. Беляков А.И., Петров Л.А., Жуков А.А. и др. Интеллектуальная система термографического анализа контроля качества литейных сплавов. -Литейное производство, № 10, 1999. - С. 28...29.
30. Беляков А.И., Петров Л.А., Долбенко Е.Т. и др. Термографический анализ валкового чугуна. - Труды пятого съезда литейщиков России. М.,21...25мая,2001.-С397...400.
31. Мирзоян А.Г. Формирование двухслойных мелющих валков в поле центробежных сил. Изобретатели - машиностроению, 2005, № 6. — с. 30...31.
32. Левин М.М., Каменев А.Ф. Ускоренное охлаждение крупногабаритных центробежнолитых заготовок. - В книге: Тепловые процессы в отливках и формах.-М.: Наука, 1972.-С. 135... 138.
33. Технические условия «Валки мукомольные» ТУ 14-2-241-76, МЧМ СССР, 1979.-5 с.
34. Специальные способы литья. Справочник под общ. ред. Ефимова В.А. — М.: Машиностроение, 1991.-436 с.
35. Руденко А.Б., Серебро B.C. Литье в облицованный кокиль. - М.: Машиностроение, 1987. - 184 с.
36. Справочник по чугунному литью. Под редакцией Гиршовича Н.Г. - Л.: Машиностроение, 1978. - 758 с.
37. Мирзоян А.Г. Влияние скорости затвердевания на качество центробежнолитых мелющих валков. - Литейное производство, 2005, №8.-9с.
38. Цветненко К.У. Расчет скорости вращения формы при центробежной отливке трубных заготовок. - Литейное производство, 1970, № 4. -С. 41...42.
39. Гималетдинов Р.Х., Мирзоян А.Г. Центробежное литье биметаллических бочек мукомольных валков. - Литейное производство, 2003, № 11.-С 34...36.
40. Семенов П.В., Тиняков В.Г., Мирзоян А.Г. Производство двухслойных заготовок. Изобретатели - машиностроению, 1997, № 1. - С. 21.. .22.
41. Александров Н.Н., Иванов Е.В., Куликов В.И., Смирнов И.В. Центробежная отливка двухслойных бандажей валков среднеходных размольных мельниц. -В кн.: Повышение эффективности производства и качества чугунных и стальных отливок. - Л.: ЛДНТП, 1982. -С 44...46.
42. Александров Н.Н., Смирнов И.В. Прогрессивная технология производства отливок бандажей углеразмольных мельниц для теплоэнергетики. - В кн.: Энерго- и ресурсосберегающие технологические процессы в литейном производстве. - Красноярск, 1986.-С 40...42.
43. Александров Н.Н., Слепнев Г.М. Исследование влияния технологических параметров литья на качество центробежнолитых биметаллических заготовок. - В кн.: Теория и практика получения биметаллических и многослойных отливок и заготовок. - Киев: Науковадумка, 1978.-С 107
44. Гималетдинов Р.Х., Копьев А.В., Мирзоян А.Г. и др. Разработка технологии получения двухслойных мукомольных валков. - Сб. науч. тр. «Литейное производство сегодня и завтра», вып. 3. - СП., 2000. -125 с.
45. Казанцев А.Г., Мирзоян А.Г. Методы оптимизации рабочего профиля
валков вальцовочных машин. - Изобретатели - машиностроению, 1999
46. Гималетдинов Р.Х., Копьев А.В., Мирзоян А.Г. Двухслойные вальцы для мукомольной промышленности. - Труды пятого съезда литейщиков России. - М., 2001. - С 103... 106.
47. Гималетдинов Р.Х., Павлов СП., Капустина Л.С, Мирзоян А.Г. Центробежное литье биметаллических бочек мукомольных валков. -Литейное производство, 2003, № 4. - С. 34...36.
48. Гималетдинов Р.Х., Капустина Л.С, Мирзоян А.Г. Особенности производства мельничных валков для пищевой промышленности. -Технология металлов, 2004, с. 10. - С 46...47.
49. Белай Г.Е., Белокопытов Г.М. Влияние частоты вращения формы на кристаллизацию рабочего слоя центробежнолитых валков. -Металлургическая и горнорудная промышленность, 1982, № 1. -С 33...35.
50. Миляев В.Н., Поручиков Ю.П. Выбор гравитационного коэффициента при центробежном литье. - Литейное производство, 1974, № 4. -С 41...42.
... плакирующего металла значительно ниже, чем у основного. Толщина плакирующего слоя должна быть не ниже 2,5-5% от толщины заготовки; иначе не произойдет заполнение плакирующим металлом узкой щели между изложницей и основным металлом. Плакирование взрывом Сварка взрывом позволяет производить плакирование как плоских так и цилиндрических поверхностей. Схема сварки плоских поверхностей ...
... (15% Cu, 9% графита, 3% асбеста, 3% SiO2 и 6% барита), фрикционные материалы изготовляют в виде тонких секторов (сегментов, полос) и крепят на стальной основе (для упрочнения). Широко применяют порошковые материалы для фильтрующих изделий. Фильтры в виде втулок, труб, пластин из порошков Ni, Fe, Ti, Al, коррозионно-стойкой стали, бронзы и других материалов g пористостью 45–50% (размер пор 2–20 ...
... Нужно иметь ввиду, что минимальный припуск необходимо брать в пределах 0,05-0,07 мм. Детали, имеющие в структуре цементит, необходимо перед калибровкой отжиг. Глава 3.Изделия порошковой металлургии и их свойства: 3.1. Металлокерамические подшипники: Металлокерамические материалы являются в ряде случаев эффективными заменителями антифрикционных подшипниковых сплавов - бронзы, латуни и др. ...
... расход тепла на потери через ограждения камеры, кДж/кг.исп.влаги: gогр= ∑Qогр/Мс=3,22/0,004=805,0 кДж/кг.исп.влаги (2.39) Суммарный удельный расход тепла на сушку древесины. Подсчитывают для среднегодовых условий: gсуш.=(gнагр.+gисп.+gогр.)с1, (2.40) где с1 – коэффициент, учитывающий неизбежные потери на нагревание ограждений и конструкций камеры, транспортных средств; утечку через ...
0 комментариев