1.5 Тригонометрические неравенства и методы их решения
1.5.1 Решение простейших тригонометрических неравенств
Большинство авторов современных учебников по математике предлагают начать рассмотрение данной темы с решения простейших тригонометрических неравенств. Принцип решения простейших тригонометрических неравенств основан на знаниях и умениях определять на тригонометрической окружности значения не только основных тригонометрических углов, но и других значений.
Между тем, решение неравенств вида , , , можно осуществлять следующим образом: сначала находим какой-нибудь промежуток (), на котором выполняется данное неравенство, а затем записываем окончательный ответ, добавив к концам найденного промежутка число кратное периоду синуса или косинуса: (). При этом значение находится легко, т.к. или . Поиск же значения опирается на интуицию учащихся, их умение заметить равенство дуг или отрезков, воспользовавшись симметрией отдельных частей графика синуса или косинуса. А это довольно большому числу учащихся иногда оказывается не под силу. В целях преодоления отмеченных трудностей в учебниках в последние годы применялся разный подход к решению простейших тригонометрических неравенств, но улучшения в результатах обучения это не давало.
Мы на протяжении ряда лет для нахождения решения тригонометрических неравенств довольно успешно применяем формулы корней соответствующих уравнений.
Изучение данной темы осуществляем таким образом:
1. Строим графики и у = а, считая, что .
Затем записываем уравнение и его решение . Придавая n 0; 1; 2, находим три корня составленного уравнения: . Значения являются абсциссами трёх последовательных точек пересечения графиков и у = а. очевидно, что всегда на интервале () выполняется неравенство , а на интервале () – неравенство .
Добавив к концам этих промежутков число, кратное периоду синуса, в первом случае получим решение неравенства в виде: ; а во втором случае – решение неравенства в виде:
2. Далее проводим аналогичные рассуждения для косинуса
Только в отличие от синуса из формулы , являющейся решением уравнения , при n = 0 получаем два корня , а третий корень при n = 1 в виде . И опять являются тремя последовательными абсциссами точек пересечения графиков и . В интервале () выполняется неравенство , в интервале () – неравенство
Теперь нетрудно записать решения неравенств и . В первом случае получим: ;
а во втором: .
Подведём итог. Чтобы решить неравенство или , надо составить соответствующее уравнение и решить его. Из полученной формулы найти корни и , и записать ответ неравенства в виде: .
При решении неравенств , из формулы корней соответствующего уравнения находим корни и , и записываем ответ неравенства в виде: .
Данный приём позволяет научить решать тригонометрические неравенства всех учащихся, т.к. этот приём полностью опирается на умения, которыми учащиеся владеют прочно. Это умения решать простейшие и находить значение переменной по формуле. Кроме того, становится совершенно необязательным тщательное прорешивание под руководством учителя большого количества упражнений для того, чтобы продемонстрировать всевозможные приёмы рассуждений в зависимости от знака неравенства, значения модуля числа a и его знака. Да и сам процесс решения неравенства становится кратким и, что очень важно, единообразным.
Ещё одним из преимуществ данного способа является то, что он позволяет легко решать неравенства даже в том случае, когда правая часть не является табличным значением синуса или косинуса.
Продемонстрируем это на конкретном примере. Пусть требуется решить неравенство . Составим соответствующее уравнение и решим его:
Найдём значения и .
При n = 1
При n = 2
Записываем окончательный ответ данного неравенства:
или
.
В рассмотренном примере решения простейших тригонометрических неравенств недостаток может быть только один – наличие определенной доли формализма. Но если всё оценивать только с этих позиций, то тогда можно будет обвинить в формализме и формулы корней квадратного уравнения, и всех формул решения тригонометрических уравнений, и многое другое.[11]
Предложенный метод хоть и занимает достойное место в формировании умений и навыков решения тригонометрических неравенств, но нельзя и преуменьшать важность и особенности других методов решения тригонометрических неравенств. К таковым относится и метод интервалов.
Рассмотрим его сущность.
... комплект под редакцией А.Г. Мордковича, хотя оставлять без внимания остальные учебники тоже не стоит. § 3. Методика преподавания темы «Тригонометрические функции» в курсе алгебры и начал анализа В изучении тригонометрических функций в школе можно выделить два основных этапа: ü Первоначальное знакомство с тригонометрическими функциями ...
... проведении исследования были решены следующие задачи: 1) Проанализированы действующие учебники алгебры и начала математического анализа для выявления представленной в них методики решения иррациональных уравнений и неравенств. Проведенный анализ позволяет сделать следующие выводы: ·в средней школе недостаточное внимание уделяется методам решения различных иррациональных уравнений, в основном ...
... курс «Решение уравнений и неравенств с использованием свойств функций» Глава II. Разработка элективного курса «Решение уравнений и неравенств с использованием свойств функций» §1. Методические основы разработки элективного курса Пояснительная записка. Основная задача обучения математике в школе – обеспечить прочное и сознательное овладение учащимися системой математических знаний и ...
... учащихся, школьную документацию, сделать выводы о степени усвоения данного понятия. Подвести итог об исследовании особенностей математического мышления и процесса формирования понятия комплексного числа. Описание методов. Диагностические: I этап. Беседа проводилась с учителем математики, которая в 10Є классе преподает алгебру и геометрию. Беседа состоялась по истечении некоторого времени с начала ...
0 комментариев