3.3. Алгоритм решения линейной вариационной задачи

Рассмотрим задачу:

Найти ivbin. У tu 3 , где

^ <7

^M--j {^^^^^(^^W-^)^. <J Уо v

у/^^, ^(%^)--^  (1)

Имеем: ^>i-[ [ {^^^^^-IW^-^

^ ^.y/J.,,.[(^L/.^^^.^.^JJ =9^,,^

(2) где ^ . ^(^), fc - W,- К- ^(^)-

Условие минимума ^ , т.е. /э<^ ^О будет:

г0^-^ = ^

-^^ал^-^ = &

-^0^-^ = ^.з (3)

^ '^-^ •^^^ -^ = &^ где 0;=^^/.; (с-^Л -^^) ,S^^~^^ ' ^ ^-^'^-^ & --^. Л--^^. ^-^

После элементарных преобразований система (3) примет вид:

^^ "^ = '^ ^-ys ~ ^

(3')

С^^ уа-ц - ^•г ^ oi^-i.

Сп-у Un--f = ctfi-f где Ci^a, ^ c^^CUi-f--^- ; cl^&, ;

^= &./ + ^- , е./^.-^-^

L-<.


44

Решение системы (3') запишется в виде:

^ . ^- , ^ -. oL_.J^-^ (4)

(7 Cn.-^ u Cn-c ^=-^- ./ ^-S..

Итак, решение задачи (1) сводилось к последовательным вычислени­ям по следующему алгоритму:

1. 0,=.?+A-^ ; йг^^Л. ; 0^=^^^ ;

g^-^ ; &=-^^ ; ^^-^^-. ;

Л i (5)

2. c^ai ; (\-а^--^- ; c^^a^^f --сг ;

^-^ - -с-г ;

л-с^ ; л^^4- ;^-^-^-;


_ (?6л-^ • и, ^ 6^/»-^ + ,9^^Л-с • •-

— ———————— 5 ^Д-< ~ ———————————tt-————————- 1 L- ~

3 Г/ - С^-< • и- - Oif-^ ^ ^f>^(~<-_ • . - о <. л _о ^-<-^r75^-——^———.с--.2^..,лА ,


Этот алгоритм будет корректным при Он ^ О , С^ /^ С? ; устойчивым при ^ > / . Рассмотрим примеры решения вариационных задач по ал­горитму (5) (см.приложение 2).


45

3.4. Понятие о методе Ритца

Проиллюстрируем идею метода на простом примере ( этот пример не имеет аналитического решения). Пусть ищется минимум функционала:

^

У^-М -f (у^ x у)^ W

О

при краевых условиях

'о)-О ; у/О^/ (2)

Приближенное значение будем искать в виде:

^-.x^^-^(^-x)^„,^C^x^(^-^).

При этом первое слагаемое всегда удовлетворяет краевым условиям (2), а остальные слагаемые удовлетворяют однородным краевым условиям у^)=с^^'^=б>,такчтовсясумма ^= х-^-С^зс^-^)ч- „,+ С^Л Y/~^ </ так же удовлетворяет краевым условиям (2).

Рассмотрим решение при n^f, т.е. решение ищем в виде Ч^ х+ ^^{f~'x-)•

Тогда подстановка его в (1) дает:

^- J [ (^ (^)}^ ^(эс + ^ое- С. ое г) 'J^ . о


Г f ^ С, ~ ^ (^ ^)эе + ^ С^эе. i ч- f^^/^--^С. (^ С^^ ^ ^ ^Лос--^ (^ С,) ^

-1^{^с^).^с^-^)^


-Чтобы найти минимум этой функции, приравняем к нулю произвол-

ную ^ -1- (^) - ^(^С,). ^- Сг - о ^

С/ = -0,0 70 f-Р.


46

Тогда решение (1) в первом приближении будет:

и-, х- - о, о У е^де (^-^) = о, ^w^-x^ О, 9£ <^ л- ^ ^

В общем случае для двуточечной вариационной задачи

? J'-JF ^ ^ ')с(^ ; ^).А ^г)- 6 о)

а-приближенное значение можно искать в виде:

u-fy ^ J^L^)^ ^-а)[с^-ё)...^ ^ ^-S) 'J (4)

(j f) ~0-

Итак, основная идея метода Ритца заключается в том, что искомая функция ищется в виде, включаемой несколько произвольных постоянных (параметров) ^ :

у. ^ (^е^с.,.^Сп.) (5)

При этом правая часть S^f^ ^/,. , Сл.) выбирается так, чтобы для лю­бых Ci удовлетворялись граничные условия:

^) - ^(л, С.,.., и.) = / , ^)- ^ С/,.., и. ; ° 6.

Подставляя (5) в функционал (3) получаем функцию от неизвестных С^, Сз.,---, Сп,'.

^J^x^f^,..,^)^ ^ (^е.,.., (^)о(^ - ^,... ^

о'

Тем самым задача об экстремуме функционала сводится к задаче об экстремуме функции от п. независимых параметров ^ ^ ... ^ С^ .


47

3.5. Примеры решения вариационных задач методом Ритца


1) Найти решение вариационной задачи:

•у^ -1 d/' ^"+ ^у)^ •' у ^ °- ^-0 •?-

Ищем решение в виде: ^ •= с^ Х.(^~ ^ )'= °<^ ( л'- х- J • .^—^-r ''•^(i-

Ул* -- v- / л - -» /* . 1 П . / Л -t ^ '^ Л

Тогда ^ j , П^Y/^- ^Y^-z^^^^^-^^J^ -

/. " о ^Jf^Y/^a-^a^^^ai^-a^^^^^^it^J^ .

-0^^^-^;. ^ -^/^^ ^-^-Отсюда и^ = - s (ус- ^)^ и-(^

Найдем точное решение: /^ - (f^') =6?^^/ ^У ^ "=> ty= ^ с<?^ зе ^ <1 Sc^ ае ^ ^

^)^ .Г^-0 -{^=^/

у^^О iCrC^^i-Ci^n^-f^O U\--/scn^ у^= ^е- ^^/

Приведем сравнительный анализ численных результатов:


Л! 0 0,25 0,5 0,75 1
^ о -0,044 -0,070 -0,060 0

/р;

о -0,052 -0,069 -0,052 0

2) Найти решение нелинейной вариационной задачи:

yf^ j -- 7 //i-^}^, ^> ^ ^)- ^

Будем искать решение в виде:

- у^ ^ ^- За: ^^ /^-^^ В такой форме она удовлетворяет краевым условиям:

f ^ ^= ^3-^^^/^-^'У^^ L ^ [i) -^-з-^ ^ff-^)- ^


48

Имеем: ^

y^J=7/^^'^-3J^ ^-^-.^'-^J ]^-

о -Откуда:

М^Й- = {(^^)^E^f^)-^3 ^ 5-fx-^E ^ -^ ^

^оГГ^ L ,

^ ^^~x9J }А=о - ^f^^ffo^f +^0^o-^^-^^

Решение ^/^ = 5,^/3^^- ^^/-Зд:^^ -= 4^-3 г -з,о^/3^--г^

г^ О 0,25 0,5 0,75 1

^

4 2,6798 1,7397 1,1798 1

^^-Зг.

4 3,2500 2,5000 1,7500 1

^

Пока о достоверности решения у /• /а^) судить очень трудно, не­обходимы более высокие приближения.

3) Найти решение вариационной задачи

н^у] -JY.?v^v^, yfo)^)-o.

С?


имеем:

Точное решение:

Р = J?JC.Vi- U

^-^/' ^-^//^

Общее решение: у "= ^ (? -i- Cx.o. Из условий ufo)-=^ , и^^у^о

е,- -1—— --^

Тогда точное решение задачи будет:


49


^ -X

е -е е^е^


- х ^ ^



/7)Е fb ^w-л - ^^^'- e~x;- ^ •

Методом Ритца в первом приближении решение ищем в виде:

<у= ех(^-ус)-. с(^м-^), у^е^-^^};

7r^j=JС c(^^^^з)+aC^'-^з>^^^^-^ -.^jj<^- %c^^a^^^};

(р^с)-^^^ ^у^е^о ^ с^-^.

Итак решение по Ритцу:

^-i-^

Сравнительная таблица имеет вид:

Л.

0 0,5 1 1,5 2

у^

0 -0,275 -0,3571 -0,2758 0

^г)

о -0,2126 -0,3520 -0,3258 0

50


Информация о работе «К решению нелинейных вариационных задач»
Раздел: Математика
Количество знаков с пробелами: 57698
Количество таблиц: 75
Количество изображений: 8

Похожие работы

Скачать
74337
5
31

... необходимости строить локальную сети обмена данными, а достаточно сэмулировать этот процесс. Глава 4. Алгоритмы решения задач устойчивости для подкрепленных пологих оболочек, основанные на распараллеливании процесса вычисления При исследовании устойчивых подкрепленных оболочек с учетом геометрической нелинейности приходится многократно решать системы алгебраических уравнений. Коэффициенты ...

Скачать
24366
0
0

... в руки инженера эффективную вычислительную процедуру решения задачи оптимизации управления, хорошо приспособленную к использованию ЭВМ. Этот метод мы рассмотрим более подробно. 2.4. Метод динамического программирования   2.4.1. Дискретная форма вариационной задачи Преодоление рассмотренных трудностей решения вариационной задачи лежит на путях использования эффективных вычислительных методов ...

Скачать
59893
13
0

... решения останется неизменным, т.е. будет состоять из переменных (Х3,Х6,Х4,Х5).   СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 1. Смородинский С.С., Батин Н.В. Методы и алгоритмы для решения оптимизационных задач линейного программирования. Ч.1. – Мн.: БГУИР, 1995. 2. Смородинский С.С., Батин Н.В. Методы и алгоритмы для решения оптимизационных задач линейного ...

Скачать
31691
0
25

... задачи динамики, определять, при каких условиях осуществимо движение с заданными свойствами. С другой стороны, и само развитие теории управления движениями материальных систем вызвало необходимость решения обратных задач динамики в различных постановках. Все это привело к тому, что обратные задачи классической механики оказались своего рода направляющими и исходными задачами современной науки об ...

0 комментариев


Наверх