1.7.4. Понятие о задаче нелинейного программирования

Рассмотрим примеры решения простейших задач нелинейного про­граммирования.

Пример 1. , Найти минимальное и максимальное значения функции ^= (^ ~^) + (3^ "^ ) при ограничениях С X/-^ Хл. >- ^ \ -?гс< +3^1 ^{2 L лу s^, эс^^О

Решение:

Область допустимых решений представляет собой многоугольник АВСЕ (рис.3). Проводя из точки М, как из центра, окружности различных радиусов, получим: минимальное значение функции г (SZ>)=196/13 прини­мает в точке Ю (24/13, 36/13), в которой окружность касается области ре­шений. Точка ^) не является угловой, ее координаты находят решая си­стему уравнений, соответствующих прямым /Йс> и C£~ . Имеется два ло­кальных максимума: з ( д\ = (f-^)^ + (о-б)2 = ^•5' ;

i(^}-- C&-^)2 + (о~б)2 = Ю


6 . ^

рис.3 Пример 2

Пусть область допустимых решений остается прежней, а й-s (,Т/-^) ^ -<- ( ^й~^)2 найти минимум и максимум i . Решение:

Так как

2M> i

(е)

, то вершина А есть точка глобального мак-

симума.

\.

—- — —

---^м

- / 1
/

f-

is, /

н

\^

^

• ^

s

/

,'' \

(

<2>
/' /

• ':; ' •-- г

/ ^. 1
/ //
/ / /

у

в /
f \

f /

/ / / \>•~-

\

Г4 .—^-^-

б

Г л

ч

6

-^

'>

26

Минимальное значение функция принимает в точке A<i(4;l),

iW=0.  , , -

I: г^с^ i = i( e)- zfe;o) =-^

II: ^а^ г ^ ^fe; - ^" ; глобальный /^wc г = гЛ?; ^)^/c)^2S.

ПримерЗ

Найти максимум и минимум значения функции i ~- Vf

при ограничениях: ( Xr- 3Q. ^^

\ зе^^^-S , ^ ?^ ^г^)

(^ У, ^ Ч, Жг ^6'

Решение:

В этом случае (рис.4) область допустимых решений не является вы­пуклой и состоит из двух отдельных частей, fnin. 2= i (^(-/;^)) = i(L(^^))-=^y I. ^лх i-- i (^ r-^;6'J; -~ ^/9

II.


Точка М (7;4/7) - есть точка глобального максимума

Н

Общая задача математичес­кого программирования формулируется следующим

образом:

\f1 f \ найти вектор: л С ^ / ^у

координаты которой удов­летворяет системе ограни­чений: д

^(^,.,^=^, ^'^/2,...,,С ^ (Х,,...,^]'=^, i^^f,...,n-

Н и доставляющий экстремум __ ^ э. функции i^ f('x^..., х^).

1 ^ ^ 7^

Рис.4

В настоящее время (начиная с 1950-х годов), бурно развивают­ся методы решения задач математического программирования с привлече­нием современной вычислительной техники.


27

II. О КРАЕВЫХ ЗАДАЧАХ


Информация о работе «К решению нелинейных вариационных задач»
Раздел: Математика
Количество знаков с пробелами: 57698
Количество таблиц: 75
Количество изображений: 8

Похожие работы

Скачать
74337
5
31

... необходимости строить локальную сети обмена данными, а достаточно сэмулировать этот процесс. Глава 4. Алгоритмы решения задач устойчивости для подкрепленных пологих оболочек, основанные на распараллеливании процесса вычисления При исследовании устойчивых подкрепленных оболочек с учетом геометрической нелинейности приходится многократно решать системы алгебраических уравнений. Коэффициенты ...

Скачать
24366
0
0

... в руки инженера эффективную вычислительную процедуру решения задачи оптимизации управления, хорошо приспособленную к использованию ЭВМ. Этот метод мы рассмотрим более подробно. 2.4. Метод динамического программирования   2.4.1. Дискретная форма вариационной задачи Преодоление рассмотренных трудностей решения вариационной задачи лежит на путях использования эффективных вычислительных методов ...

Скачать
59893
13
0

... решения останется неизменным, т.е. будет состоять из переменных (Х3,Х6,Х4,Х5).   СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 1. Смородинский С.С., Батин Н.В. Методы и алгоритмы для решения оптимизационных задач линейного программирования. Ч.1. – Мн.: БГУИР, 1995. 2. Смородинский С.С., Батин Н.В. Методы и алгоритмы для решения оптимизационных задач линейного ...

Скачать
31691
0
25

... задачи динамики, определять, при каких условиях осуществимо движение с заданными свойствами. С другой стороны, и само развитие теории управления движениями материальных систем вызвало необходимость решения обратных задач динамики в различных постановках. Все это привело к тому, что обратные задачи классической механики оказались своего рода направляющими и исходными задачами современной науки об ...

0 комментариев


Наверх