2.3. Приближенный метод решения краевых задач. Конечно-разностный алгоритм
Решение краевой задачи методом конечных разностей несколько сложнее по сравнению с задачей Коши для того же дифференциального уравнения.
Рассмотрим линейное дифференциальное уравнение с краевыми условиями:
^\p(^^^-,H^^(a)^,y(S)^. (1)
Разобьем основной отрезок [ л ; о ] на /г равных частей длины
^= ^-о-. Точки разбиения имеет абсциссы:
/г' f р '
Ху^ О,, .ЗС^ЭСЬ^Л., :32п.=й? , <.^0^,..-,г^.
Введем обозначения: ^ (^)^У<-, У (^)^^^ / ^^'')=^"^ .
р(^)^р^ ^С^)-у^ т^^-.
Заменяем производные конечно-разностными соотношениями:
и'- ^^- </- ^-^- '/- У--;^-'
Уо " ~^^ ^ ^ - «^^ , •У^ - ——^——— , ,^ (^-^ -^21)/, ^ ^-2^^^
У. - V ^ 7—//^ J^
Тогда задача (1) сводится к решению системы из ^ - f линейных уравнений с /г.-/ неизвестными Чг :
(^ - ^-У^)/^ -+- Р. (^ -^)/2k ^^ - ^ ,
^--^ , ^^- (2)
Эту систему представим в виде:
-^ ^ 0-^г - •С.^ = S^ ^ Q, = (^~2k^)/ (. ,
tc -~ (^p^)/L , S. --^. h/i^ £ ^-^/).
(2')
Система (2') имеет трехдиагональную расширенную матрицу:
/-й^ -У, О О .--;... О f^-^/
>-г. |
- ^ а^ - ^ о •... \ ... о i &
О - / Дд - ^ ...-;.. ^ О i &
\ о о о о "^ ^-< ^^ 1 ^"-<
31
/ Q О О О |
~t< О О Сл - Га. О О Сз -t3 |
0 0 | 1 ctf cL | \ |
0 | ^ | |
/ |
О |
о |
о |
П.-f |
(3')
где с/= а^ с, = а^ - ^-i-, А^-^л ^ = & + "^"г"
Тогда алгоритм решения системы (2) представим в виде алгоритма:
1. {,-- 2-Lp^ I, =<?-^; ft/ - ^^)/i,, О. = ^-^^/^,
i^^+kp,)/^, ^--(^^p.)/^; ^^-^4^ ^=-^^//.;
(4)
2. e/--ft<, с^о,- -1^ ^=^,
з: ^-< -. f<a<,^ -^ г:л-г ^) /с^ ;
У^ = (о1^ ^ ^^ ^+,^)/Сп-г > ^ ^ ^ з/..., о-i.
Алгоритм называется корректным, если все действия в нем выполнены, т.е. ^ ^о, U i-0 / G.f =<?, CiTt-o . Устойчивость алгоритма обуславливается выполнением условия ; Уп-ч, = •с^Н/^/-'1 ^ '^/Сп-^ , |^>-(;/Ся-<: I ^ ^ . Нетрудно видеть, если исходное уравнение (1) нелинейное, то система типа (2) также будет нелинейной, а алгоритмы типа (4) составить невозможно.
^ .- Рассмотрим примеры решения краевых задач для дифференциаль-'HbDF'BTOporo порядка с переменными коэффициентами, где как правило аналитических решений не существует.
Пример!.
Дана краевая задача: i/"^- 2^ ^ ^и--= s^ft эс. Ч'(о)=- О, ^ ('/) '= 3 . Результаты вычисления этой задачи по алгоритму (4) получим в виде таблично заданной функции.
5СГ | 0 | 0,1 | 0,2 | 0,3 | 0,4 | 0,5 | 0,6 | 0.7 | 0,8 | 0,9 | 1 |
{^ | 0 | 0,79 | 1,59 | 2,32 | 2,94 | 3 | |||||
^ | о | 0,38 | 0,76 | 1,13 | 1,49 | 1,82 | 2,13 | 2,41 | 2,65 | 2,85 | 3 |
32
III. ПОНЯТИЕ ОБ ОДНОМЕРНОЙ ВАРИАЦИОННОЙ ЗАДАЧЕ
Исходя из общего закона сохранения энергии многие физические задачи при адекватном построении их математических моделей сводятся к вариационным задачам. Вариационное исчисление занимается задачей отыскания наибольших и наименьших значений функционалов.
... необходимости строить локальную сети обмена данными, а достаточно сэмулировать этот процесс. Глава 4. Алгоритмы решения задач устойчивости для подкрепленных пологих оболочек, основанные на распараллеливании процесса вычисления При исследовании устойчивых подкрепленных оболочек с учетом геометрической нелинейности приходится многократно решать системы алгебраических уравнений. Коэффициенты ...
... в руки инженера эффективную вычислительную процедуру решения задачи оптимизации управления, хорошо приспособленную к использованию ЭВМ. Этот метод мы рассмотрим более подробно. 2.4. Метод динамического программирования 2.4.1. Дискретная форма вариационной задачи Преодоление рассмотренных трудностей решения вариационной задачи лежит на путях использования эффективных вычислительных методов ...
... решения останется неизменным, т.е. будет состоять из переменных (Х3,Х6,Х4,Х5). СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 1. Смородинский С.С., Батин Н.В. Методы и алгоритмы для решения оптимизационных задач линейного программирования. Ч.1. – Мн.: БГУИР, 1995. 2. Смородинский С.С., Батин Н.В. Методы и алгоритмы для решения оптимизационных задач линейного ...
... задачи динамики, определять, при каких условиях осуществимо движение с заданными свойствами. С другой стороны, и само развитие теории управления движениями материальных систем вызвало необходимость решения обратных задач динамики в различных постановках. Все это привело к тому, что обратные задачи классической механики оказались своего рода направляющими и исходными задачами современной науки об ...
0 комментариев