3. Математические модели некоторых процессов
Рассмотрим примеры задач, исследование которых проводится с использованием обыкновенных дифференциальных уравнений.
Пример (закон роста населения Земли). Пусть - число людей на Земле в момент времени . Демографические данные показывают, что за небольшой интервал времени прирост населения пропорционален квадрату числа людей и интервалу времени:
,
где - некоторая постоянная. Разделив левую и правую части этого равенства на и перейдя к пределу при , получим уравнение
, (5)
где - дифференцируемая функция, приближающая функцию . Уравнение (5) аналогично уравнению (4), рассмотренному выше. Его общее решение имеет вид . Заметим, что известные демографические данные хорошо согласуются с частным решением
,
где время исчисляется в годах от начала нашей эры. Функция не определена при , поэтому закон роста населения в будущем должен измениться.
Пример (модель производства). Пусть - интенсивность выпуска продукции некоторым предприятием в момент времени , а - цена продукции. Доход от продажи этой продукции составляет . Пусть часть вырученных средств, равная
, (6)
где - некоторое число, направляется на расширение производства. Предположим, что скорость изменения интенсивности выпуска продукции прямо пропорциональна объему инвестиций:
, (7)
где - постоянная. Из (6) и (7) получаем уравнение
, (8)
общее решение которого при постоянном имеет вид , где . Если задано начальное условие
, (9)
то решением задачи Коши (8), (9) является функция
.
Уравнение (8) называется уравнением естественного роста. Им описываются также процессы радиоактивного распада в физике и размножения бактерий в биологии.
На практике с увеличением выпуска продукции происходит насыщение рынка и цена падает. Если, например, , где и - положительные постоянные, то вместо (8) получим уравнение
, (10)
аналогичное уравнению, рассматриваемому в следующем примере.
Пример (модель рекламы). Пусть - число людей, знающих к моменту времени некоторую новость, а - общее число людей. Будем предполагать, что скорость распространения новости прямо пропорциональна как числу людей , уже ее знающих, так и числу людей , еще не знающих новости, то есть
, (11)
где - постоянная. Разделив переменные в этом уравнении, получим
,
откуда, используя результат последнего примера § 4, найдем
или
.
График этой функции называется логистической кривой. Для случая , соответстщего условию, что в момент половина людей знает новость (), эта
кривая представлена на рис. 15.
Рис.15.
Рассматриваемое уравнение обладает также решениями и , обращающими в ноль его правую часть. Эти решения соответствуют ситуациям, когда новость не распространяется: в первом случае в начальный момент ее никто не знает, а во втором - знают все.
Отметим, что уравнения (10) и (11), описывающие совершенно разные процессы, по существу, совпадают. Уравнения того же типа возникают при описании динамики эпидемий, процессов размножения бактерий в ограниченной среде обитания, применяются в математической теории экологии.
Упражнения
1. Решить уравнения:
1) ;
2) ;
3) ;
4);
5) ;
6) ;
7) ;
8) ;
9) ;
10) ;
11) ;
12) ;
13) ;
14) ;
15) ;
16) ;
17) ;
18) ;
19) ;
20) ;
21) ;
22) ;
23) ;
24) ;
25) ;
26) .
2. Решить задачи Коши:
1) , ;
2) , ;
3) , ;
4) , ;
5) , ;
6) , ;
7) , ;
8) , ;
9) , ;
10) , ;
11) , ;
12) , ;
13) , ;
14) , ;
15) , ,
16) , ;
17) , ;
18) , ;
19) , ;
20) , .
Ответы
1.
1) ;
2) ;
3) ;
4) ;
5) ;
6) ;
7) ;
8) ;
9) ;
10) ;
11) ;
12) ;
13) ;
14) ;
15) ;
16) ;
17) ;
18) ;
19) ;
20) Общее решение находится
из уравнения ;
21) ;
22) ;
23) ;
24 ) ;
25) ;
26) .
2.
1) ;
2) ;
3) ;
4) ;
5) ;
6) ;
7) ;
8) ;
9) ;
10) ;
11) ;
12) ;
13) ;
14) ;
15) и ;
16) ;
17) ;
18) ;
19) ;
20) .
... и докажите сходимость полученного разложения к порождающей функции. Исследовать на абсолютную и условную сходимость . Зав. кафедрой -------------------------------------------------- Экзаменационный билет по предмету МАТЕМАТИЧЕСКИЙ АНАЛИЗ Билет № 12 Сформулируйте теорему Ролля и объясните ее геометрический смысл. Исследуйте функцию на выпуклость и вогнутость. Какая ...
... «Математических лекциях о методе интеграла»[9]. Здесь дан способ взятия большинства элементарных интегралов и указаны методы решения многих дифференциальных уравнений первого порядка. 2 Вклад Л.Эйлера в развитие математического анализа Леонард Эйлер (Euler, Leonhard) (1707–1783) входит в первую пятерку величайших математиков всех времен и народов. Родился в Базеле (Швейцария) 15 апреля ...
... педагогически значимого подмножества, на основе которого можно было бы провести углубленное изучение понятия экстремума в его взаимосвязях с другими понятиями математического анализа. Во-вторых, объективно получается, что традиционные коллекции упражнений созданы не столько для изучения понятия экстремума, сколько для иллюстрации методов дифференциального исчисления для его отыскания. Этого вполне ...
... решений целевая функция принимает в точке (0; 6), и это значение равно . рис. 1 - Графическое решение задачи линейного программирования ЗАДАЧА 2 Использовать аппарат теории двойственности для экономико-математического анализа оптимального плана задачи линейного программирования Для изготовления четырех видов продукции используют три вида сырья. ...
0 комментариев