3.2 Знаходження найбільшого і найменшого значень функції
Нехай на відрізку задано неперервну функцію , тоді за теоремою Вейєрштрасса функція на даному відрізку досягає свого найбільшого і свого найменшого значень. Це може статися як всередині відрізка, так і на його кінцях.Якщо функція набуває найбільшого значення всередині відрізка, то це найбільше значення є одночасно і один з максимумів (локальний максимум) заданої функції.
Теж саме можна сказати про найменше значення функції. Але може бути й так, що одне із значень функція набуває всередині відрізка, а друге на одному з кінців.
Звідси випливає спосіб знаходження точок, в яких функція набуває найбільшого та найменшого значення на відрізку :
1) знайти критичні точки функції;
2) обчислити значення функції в критичних точках, які належать відрізку, і на кінцях відрізка;
3) найбільше (найменше) значення серед утвореної множини і буде найбільшим (найменшим) значенням функції, заданої на відрізку .
Приклад 1. Знайти найбільше і найменше значення функції на відрізку .
Розв’язання. Знаходимо стаціонарні точки. Для цього знайдемо похідну:
Прирівнюючи цю похідну до нуля і розв’язуючи рівняння
,
дістаємо стаціонарні точки: . Точок, в яких функція не існує, немає.
Обчислюємо значення функції в точках , а також на кінцях відрізка, тобто в точках :
Отже, найбільше значення , найменше є .
Приклад 2. Знайти найбільше та найменше значення функції на відрізку .
Розв’язання. Функція є неперервною на відрізку . Знаходимо екстремуми функції. Обчислюємо першу похідну:
.
Функція має дві критичні точки: . Але не належить відрізку . В точці функція має максимум, причому . Обчислюємо значення функції на кінцях відрізка: .
Таким чином, .
Приклад 3. Знайти найбільше та найменше значення функції на відрізку .
Розв’язання. Знаходимо критичні точки функції, розв’язавши рівняння :
.
Коренями цього рівняння є числа: . Проте ці точки не належать відрізку , тому всередині цього відрізка критичних точок немає.
Обчислюємо значення функції на кінцях відрізка:
.
Отже, .
3.3 Інтервали опуклості та угнутості кривої, точки перегину
Графік функції може бути опуклим або угнутим.
Графік функції є опуклим на проміжку , якщо відповідна дуга кривої лежить нижче дотичної, проведеної в довільній точці .
Графік функції є угнутим на проміжку , якщо відповідна дуга кривої лежить вище дотичної, проведеної в довільній точці .
Для дослідження графіка функції на опуклість застосовується друга похідна функції. Якщо друга похідна двічі диференційовної функції від’ємна в інтервалі , тоді графік функції опуклий на даному проміжку, якщо друга похідна додатна , тоді графік функції угнутий на .
Точка, при переході через яку крива змінює опуклість на угнутість або навпаки, називається точкою перегину.
Точками перегину функції можуть бути лише точки, в яких друга похідна дорівнює нулю або не існує. Такі точки називають критичними точками другого роду.
... мов полягає в наявності сформованої іншомовної комунікативної компетенції,яка входить до складу когнітивно-технологічного компоненту. 2. Компонентно-стурктурний аналіз професійної компетентності вчителя іноземних мов Професійна компетентність учителя синтезує в собі, по-перше, загальні вимоги до педагога як до особистості, по-друге, особливості його професійно-педагогічної діяльності, по-трет ...
... єнню студентами навчальної програми. Система розрахована на студентів з різним рівнем підготовки і допомагає кожному з них зайняти своє місце у суспільстві та набути високу професійну кваліфікацію. 1.5 Педагогічний процес у ВНЗ МВС Франції Сучасна система вищої освіти Франції, яка склалася в процесі історичного розвитку, нині включає: університети з традиційною системою факультетів і пі ...
... ів є актуальною, оскільки на її основі реально можна розробити формувальні, розвивальні та оздоровчі структурні компоненти технологічних моделей у цілісній системі взаємодії соціальних інститутів суспільства у формуванні здорового способу життя дітей та підлітків. На основі інформації, яка отримана в результаті діагностики, реалізується методика розробки ефективних критеріїв оцінки інноваційних ...
... українського народу. Україна на шляху суверенного розвитку: суспільно-політичні трансформації. Формування політичних партій. “Партія влади” та опозиція, їх вплив на громадсько-політичне життя в Україні. Соціальна політика в контексті нових реалій. Культура, освіта та наука в умовах функціонування суверенної держави. Українська церква та проблеми духовного відродження нації. Партійне життя. ...
0 комментариев