1.4 ДНК-зонды, клонирование, векторные системы.
ДНК-зондом может служить любая однонитевая ДНК огра-
ниченного размера, используемая для поиска комплементарных
последовательностей в молекуле большего размера или среди
пула разнообразных молекул ДНК. В ряде случаев в качестве
зондов используют искусственным образом синтезированные оли-
гонуклеотидные последовательности ДНК, размер которых обычно
не превышает 30 нуклеотидов. Зондом также могут служить вы-
деленные из генома последовательности ДНК. Однако значитель-
но чаще такие последовательности предварительно клонируют,
чтобы иметь возможность получать их в любое время и в неог-
раниченном количестве. Клонирование предполагает встраивание
(инсерцию) чужеродной экзогенной ДНК в векторную молекулу
ДНК, обеспечивающую проникновение этой конструкции в бакте-
риальные клетки хозяина (Рис 1.5). Химерные молекулы ДНК,
составленные из фрагментов разного происхождения, носят наз-
вание рекомбинантных ДНК. В качестве клонирующих векторов
используют модифицированные плазмиды, фаги, космиды, ретро-
и аденовирусы, а также некоторые другие генетические конс-
трукции. Размеры клонированных ДНК-зондов составляют от со-
тен до нескольких тысяч нуклеотидов, что определяется, глав-
ным образом, способностью вектора удерживать чужеродный
фрагмент ДНК. Особенно широко применяют в качестве векторов
плазмидную ДНК.
Плазмиды - это небольшие кольцевые двухцепочечные мо-
лекулы ДНК, которые могут присутствовать в различном числе
копий в бактериальных клетках. Открытие плазмид связано с
изучением генетической природы антибиотикоустойчивости. Ока-
залось, что именно плазмиды могут нести гены, сообщающие
клеткам устойчивость к различным антибиотикам, и потеря
чувствительности инфекционных бактерий к их действию как раз
и происходит за счет отбора тех штаммов, в которых имеются
плазмиды с соответствующей генетической информацией. Заме-
тим, что присутствие плазмиды в бактериальной клетке вовсе
не обязательно для обеспечения ее жизнедеятельности, так как
при отсутствии антибиотиков в среде обитания бактерий штам-
мы, не содержащие плазмид, вполне жизнеспособны. Плазмиды
имеют автономную систему контроля репликации, обеспечивающую
поддержание их количества в клетке на определенном уровне -
от одного до нескольких сотен плазмидных геномов на клетку.
Обычно для клонирования выбирают плазмиды с ослабленным
контролем репликации, что позволяет им накапливаться в клет-
ке в большом числе копий. Конструирование плазмидных клони-
рующих векторов заключается во внесении изменений в систему
контроля репликации и в добавлении или вырезании генов анти-
биотикоустойчивости или удобных для клонирования иных гене-
тических элементов: специфических сайтов рестрикции, инициа-
ции и регуляции транскрипции и т.п. Чаще всего для клониро-
вания используют плазмиды pBR322, ColE1 или их производные.
Кольцевую молекулу плазмидной ДНК можно легко перевести
в линейную форму путем единичного разрыва в месте локализа-
ции уникального сайта рестрикции. Присоединение (встраива-
ние, инсерция) фрагмента чужеродной ДНК к концам линейной
молекулы осуществляется с помощью специфических ферментов
-лигаз, после чего гибридная плазмида вновь принимает коль-
цевую форму. Разработаны достаточно простые и эффективные
методы трансформации бактерий, то есть искусственного введе-
ния плазмид в бактериальные клетки. При этом, присутствующие
в плазмидах гены антибиотикоустойчивости используют в ка-
честве маркеров трансформированных бактерий для их отбора на
соответствующих селективных средах. При размножении
трансформированных бактерий происходит увеличение числа ко-
пий инсертированного фрагмента ДНК. Таким образом, этот чу-
жеродный для бактерий генетический материал может быть полу-
чен, практически, в любых количествах. Выделенная из бакте-
рий плазмидная ДНК или изолированный из плазмиды инсертиро-
ванный фрагмент могут быть в дальнейшем использованы в ка-
честве ДНК-зондов.
Для некоторых целей в качестве клонирующих векторов
оказалось удобнее использовать фаги - бактериальные вирусы.
Фаговая ДНК существует только в линейной форме, поэтому при
ее рестрикции образуются два фрагмента, которые сшивают с
чужеродной ДНК с образованием химерного фага. Чисто техни-
чески эта операция проще, чем инсерция в плазмиду. Однако,
размеры встраимовой ДНК ограничены пакующей способностью го-
ловки фага. Поэтому при конструировании вектора вырезают
последовательности фаговой ДНК, не имеющие критического зна-
чения для жизнеобеспечения фага. Такой бактериофаг может су-
ществовать только в том случае, если в него встроена чуже-
родная ДНК, по размерам сопоставимая с вырезанной фаговой
ДНК. Наиболее удачные конструкции векторов были получены на
основе фага лямбда - лямбда gt10, лямбда gt11, лямбда Zap.
Многие проблемы молекулярной генетики успешно решаются
с использованием экспрессионных векторов, содержащих в своем
составе регуляторные последовательности, обеспечивающие син-
тез чужеродных белков в клетках хозяина. Так в случае лямбда
gt11 фаги могут быть выращены в, так называемых, репликатив-
ных условиях, обеспечивающих экспрессию инсертированной ДНК.
Так как обычно ДНК встраивают в район локализации маркерного
гена, позволяющего вести селекцию химерных фагов, то
экспрессироваться будет слитый белок, в котором часть поли-
пептидной цепи будет соответствовать маркерному белку, а
часть цепи будет транслироваться в соответствии с информаци-
ей, заключенной во встроенном фрагменте ДНК. Этот белок мо-
жет быть идентифицирован путем детекции фрагмента маркерного
белка либо с помощью антител к специфическим участкам, коди-
руемым чужеродной ДНК.
В последнее время большое распространение получило
клонирование в космидах - конструкциях, обьединяющих в себе
преимущества плазмид и фагов. Космиды получены на основе
плазмид, но в них введены генетические элементы фага лямбда,
отвечающие за упаковку ДНК в фаговой частице. Такие векторы
могут существовать не только в виде плазмид, но и в виде фа-
говых частиц in vitro. Космиды обладают большей клонирующей
способностью по сравнению с плазмидными и фаговыми векторами
и могут нести до 40-45 тысяч пар оснований инсертированной
ДНК. Все вышеперечисленные векторы используются для клониро-
вания в прокариотических системах.
Векторы, пригодные для направленного переноса в эука-
риотические клетки, конструируют на основе прокариотических
или дрожжевых плазмид - единственных плазмид, найденных в
клетках эукариот, а также используют различные эукариоти-
ческие вирусы, чаще всего ретровирусы, аденовирусы или аде-
ноассоциированные вирусы. При использовании плазмид в ка-
честве клонирующих векторов в них вводят вирусные последова-
тельности, ответственные за начало репликации. Введение век-
торов в эукариотические клетки часто осуществляют путем
ко-трансформации, то-есть одновременно вводят плазмиду и
сегмент чужеродной ДНК. Векторные последовательности, вве-
денные в клетки эукариот, могут сохраняться там в течение
нескольких дней в виде суперскрученных кольцевых молекул -
эписом. В редких случаях возможна интеграция экзогенной ДНК
в хромосомную ДНК. В этих случаях введенные последователь-
ности устойчиво сохраняются в геноме клеток хозяина и насле-
дуются по менделевскому типу (см. Глава VIII).
Для клонирования субхромосомальных фрагментов ДНК, со-
держащих целые гены, разработана система дрожжевых минихро-
мосом. Искусственные дрожжевые хромосомы (YAC - artificial
yeast chromosomes) конструирют на основе плазмидных векто-
ров, содержащих в своем составе известные центромерные и те-
ломерные последовательности хромосом дрожжей, необходимые
для поддержания и репликации векторов в клетках хозяина. Та-
кие системы способны удерживать фрагменты чужеродной ДНК
размером в несколько сотен тысяч и даже миллионов пар осно-
ваний.
Остановимся коротко на методах введения векторов в клетки
хозяина. Но прежде всего, определим основные термины. Как
уже упоминалось, введение плазмидной ДНК в бактериальные
клетки назвается трансформацией. Если перенос генов осущест-
вляется с помощью фага, то говорят о трансдукциии. Процесс
введения экзогенной ДНК в эукариотические клетки называется
трансфекцией. Все эти методы основаны на подборе условий,
облегчающих прохождение плазмидной или фаговой ДНК через
клеточные и ядерные мембраны. Для повышения проницаемости
мембран используют два разных подхода. В первом случае про-
водят обработку векторной ДНК и клеток хозяина буферными
растворами, повышающими проницаемость клеточных и ядерных
мембран (метод кальций-фосфатной преципитации,
DEAE-декстран-опосредованная трансфекция). Во втором случае
используют краткосрочное физическое воздействие на клетки
для создания в мембранах микропор, проходимых для макромоле-
кул ДНК (метод электропорации - воздействие высоковольтным
электрическим полем, "бомбардировка" частицами золота и
т.п.). Более подробно проблемы векторов и методы генетичес-
кой трансфрмации (трансдукции) рассмотрены в Главе IX. Воп-
росам молекулярного клонирования также посвящена обширная
литература (Гловер, 1988; 1989; Шишкин, Калинин, 1992; Мани-
атис и др., 1984; Дейвис, 1990; Sambrook et al., 1989).
... активных факторов в биосфере. Поэтому генетико-гигиеническое нормирование содержания подобных факторов в окружающей среде является обязательным компонентом профилактики заболеваемости человека. Генетика человека на этапе ее становления обозначалась в нашей стране в духе времени – евгеникой. Обсуждение возможностей евгеники, совпавшее по времени со стартом и быстрым развитием генетических ...
нетика, микробиология, вирусология. Генетика человека — раздел генетики, изучающий закономерности наследования и изменчивости признаков у человека. Глава 2. Русские учёные в развитии генетики генетика наследственность ученый лобашев филипченко Филипченко Юрий Александрович У истоков отечественной генетики стояли выдающиеся ученые, которые пришли в новую науку из традиционных биологических ...
... в практику, должны быть разработаны методы для установления степени риска либо в отдельных семьях, либо путем скринирования всех родителей. Это изменит назначение медицинской генетики от генетики, консультирующей ретроспективно, к службе генетического предупреждения на перспективной основе. Может возникнуть новое отношение к ответственности родителей к воспроизводству потомства, которое вместе с ...
... гнезда", "Войны и мира", "Вишневого сада". Важно и то, что главный герой романа как бы открывает целую галерею "лишних людей" в русской литературе: Печорин, Рудин, Обломов. Анализируя роман "Евгений Онегин", Белинский указал, что в начале XIX века образованное дворянство было тем сословием, "в котором почти исключительно выразился прогресс русского общества", и что в "Онегине" Пушкин "решился ...
0 комментариев