26 случаях - абсолютно однозначно. 23 лизосомных гена клони-
рованы. Для 20 лизосомных заболеваний описаны различные му-
тантные аллели, что подтверждает правильность идентификация
соответствующих генов (см.Главу III). Для 12 заболеваний на-
йены мажорные мутации в различных популяциях. Для 8 заболе-
ваний общее количество идентифицированных мутаций пока не
превысило шести и, возможно, мажорные мутации для них еще
будут идентифицированы.
Спектр мутаций в разных лизосомных генах очень разнооб-
разен. Так, при болезни Фабри наряду с явным преобладанием
миссенс мутаций обнаружено 14 внутригенных перестроек разме-
рами от 0.4 до 8 кб, многие из которых имеют точки разрыва в
экзоне 2 - области локализации большого числа Alu-повторов.
Сам ген GLA содержит 12 различных Alu-элементов, составляю-
щих около 30% его длины. В местах разрывов часто обнаружива-
ются короткие прямые и обращенные 2-6 нуклеотидные повторы.
Одним из возможных механизмов возникновения структурных пе-
рестроек в данном гене может быть незаконная Alu-Alu реком-
бинация или, что более вероятно, рекомбинация между коротки-
ми повторами. Участие Alu-элементов предполагается также при
возникновении 16-кб делеции промоторной области и первых 5-и
экзонов гена HEXB - мажорной мутации при болезни Зандхоффа.
Нарушение процесса рекомбинации является, по-видимому, при-
чиной возникновения очень большого числа крупных и мелких
делеций в IDS-гене при синдроме Хантера. Высокая концентра-
ция CpG динуклеотидов рассматривается как возможный эндоген-
ный механизм возникновения мажорной среди евреев-ашкенази
мутации P330FS в гене SPDM1 при болезни Ниманна-Пика типа B,
так как эта делеция возникает в районе, где из 10 остатков 9
составляют цистеины.
Делеции целых экзонов или инсерции интронных областей
возникают сравнительно часто в результате точковых мутаций в
донорных или акцепторных сайтах сплайсинга. Примерами являют-
ся мажорная в Японии сплайсинговая мутация, сопровождающаяся
делецией 7-го экзона гена- PPGB, приводящая к галактосиалидо-
зу и сплайсинговая мутация IVS2+1, обусловливающая вырезание
экзона 2 гена GBA при болезни Гоше. Появление в результате
точковой мутации в интронной области нового сайта сплайсинга
также может сопровождаться структурными перестройками. Тако-
ва, в частности, природа 33-нуклеотидной инсерции в гене PSAP
при метахроматической лейкодистрофии, обусловленной дефицитом
SAP1; 24-кб инсерции в гене HEXB при болезни Зандхоффа и
5-нуклеотидной инсерции в гене IDUA при синдроме Шейе. Важно
отметить, что подобные мутации совместимы с образованием не-
большого числа функционально активных мРНК, следствием чего
является относительно более мягкое течение соответствующих
форм заболеваний.
В некоторых случаях возникновению мутаций может
способствовать наличие псевдогена. Молекулярный анализ псев-
догена, тесно сцепленного с геном GBA, показал, что, по
крайней мере, 4 мутации, обнаруженные у пациентов с болезнью
Гоше, присутствуют в норме в псевдогене. Это 2 мажорные му-
тации - L444P и IVS2+1 и еще 2 миссенс мутации в 10-м экзоне
(A456P и V460V). Подобное сходство несомненно указывает на
фундаментальную роль псевдогена в образовании мутаций в
GBA-гене. В то же время само по себе присутствие псевдогена
не является мутагенным фактором, особенно если сам ген и его
псевдоген локализованы в разных хромосомах, как, например, в
случае генов GM2A и FUCA1, псевдогены которых находятся в
хромосоме 3 и в области 2q31-q32, соответственно.
Для двух лизосомных болезней - фукозидоза и синдрома
Гурлера, мажорными являются нонсенс мутации. Более того, при
фукосидозе все известные к настоящему времени мутации приво-
дят к полному отсутствию продукта FUCA1-гена. Так, наряду с
мажорной мутацией Q351X, представленной в 20% хромосом у
больных фукосидозом, описаны еще 4 нонсенс мутации и 4 деле-
ции со сдвигом рамки считывания. При синдроме Гурлера две
мажорные нонсенс мутации - W402X и Q70X, составляют около
50% всех известных мутантных аллелей гена IDUA. Кроме того,
при этом заболевании зарегистрированы еще 4 минорные по
частоте нонсенс мутации и 1 делеция со сдвигом рамки считы-
вания. 3 миссенс мутации и интронная мутация, создающая до-
полнителный сайт сплайсинга в гене IDUA, не приводят к пол-
ному блоку синтеза идуронидазы и реализуются в виде синдрома
Шейе. Уместно заметить, что оба заболевания - синдром Гурле-
ра и синдром Шейе, являются классическим примером фенотипи-
ческого разнообразия, обусловленного существованием аллель-
ных серий (см.Главу IV). Такой спектр крайне тяжелых мутаций
нельзя объяснить только повышенной частотой их возникнове-
ния. Более вероятным представляется предположение о том, что
кодируемые FUCA1- и IDUA-генами белки обнаруживают опреде-
ленную устойчивость к небольшим повреждениям и сохраняют
функциональную активность при определенных аминокислотных
заменах, то есть миссенс аллели в этих генах проявляют себя
как нейтральные мутации и не приводят к развитию заболева-
ний.
Хорошо известно, что распространение мутаций в популя-
циях определяется не только, и не столько повышенной часто-
той их возникновения, но многими другими популяционно-гене-
тическими факторами и, в первую очередь, связано с эффектом
основателя (см.Главу V). Типичным следствием эффекта основа-
теля, как известно, является наличие различных мажорных по
частоте мутаций одного и того же гена у пациентов разных
изолятов и этнических групп. Подобная картина наблюдается, в
частности, при ганглиозидозе GMI. Так, в Японии мажорными
при этом заболевании являются миссенс мутации I51T и R201C,
тогда как в Европе преобладают мутации R482H и W273L. Эффек-
том основателя можно объяснить высокую частоту аспартилглю-
козаминурии в Финляндии, так как в 98% случаев у пациентов
финского происхождения заболевание обусловлено присутствием
одной и той же миссенс мутации C163S, резко уменьшающей ак-
тивность аспартилглюкозаминидазы. Интересно отметить, что
эта мутация у больных находится в сильном неравновесном
сцеплении с другой миссенс мутацией в AGA-гене - R161Q, яв-
ляющейся, в свою очередь, редкой формой полиморфизма. Невоз-
можно, однако, исключить возможность комбинированного влия-
ния этих двух мутаций на фенотип.
Яркие примеры этнических различий по частоте и спектру
мажорных мутаций выявляются при анализе таких лизосомных бо-
лезней накопления как болезнь Тея-Сакса, Ниманна-Пика и бо-
лезнь Гоше. Прежде всего, эти заболевания особенно распрост-
ранены среди евреев-ашкенази, среди которых они встречаются
в десятки раз чаще, чем в других популяциях европейского или
азиатского происхождения. Наличие специфических мажорных му-
таций для всех трех заболеваний у 70 - 95% всех пациентов
еврейского происхождения скорее всего нельзя обьяснить толь-
ко эффектом основателя. Генетический дрейф, селективное пре-
имущество гетерозигот, характер миграции, социальные и рели-
гиозные особенности, обусловливающие ассортативность образо-
вания супружеских пар - вот те факторы, которые, по всей ви-
димости, лежат в основе этих различий. В этой связи инте-
ресно отметить, что среди пациентов других национальностей
мажорные мутации гомологичных генов, как правило, иные, чем
у евреев-ашкенази. Так, болезнь Ниманна-Пика типа B часто
встречается среди жителей стран, расположенных в западной
части Северной Африки. Однако, в 80% случаев заболевание
связано с делецией R608 в SMPD1-гене, которая не является
мажорной среди евреев-ашкенази.
На примере лизосомных болезней могут быть хорошо
прослежены корреляции между типами мутаций и клиническими
особенностями заболеваний. Выше уже упоминалось об аллельных
вариантах гена IDUA, приводящих либо к синдрому Гурлера, ли-
бо к синдрому Шейе. Разные миссенс мутации в гене NAGA при-
водят к болезни Шиндлера или к болезни Канзаки (Табл.
10.1.). Важное значение для анализа молекулярных основ пато-
генеза заболеваний имеют специфические мутации с поздней фе-
нотипической манифестацией (так называемые взрослые формы).
Такие мутации обнаружены в соответствующих генах при болез-
нях Тея-Сакса и галактосиалидозе. Очень интересен случай
различного фенотипического проявления на разном расовом ге-
нетческом фоне одной и той же мутации - мажорной 16-кб деле-
ции, обнаруживаемой у 27% пациентов с детской формой болезни
Зандхоффа (McInnes et al.,1992; Sidransky et al.,1994). В
частности, в одной франко-канадской семье эта мутация в ком-
паунде с миссенс мутацией P417L, описанной впервые в Японии
у пациента с подростковой формой заболевания, провлялась как
взрослая форма с очень мягким течением заболевания.
В ряде случаев удалось проанализировать молекулярную
природу совместного влияния двух аллелей одного гена на фе-
нотип. К примеру, при некоторых форм метахроматической лей-
кодистрофии трудность молекулярной диагностики заболевания
связана с существованем, так называемого, псевдодефицитного
аллеля ARSA-гена. Этот полиморфный аллель встречается в по-
пуляциях с достаточно высокой частотой, так что гомозиготы
по нему состаляют 1 - 2% всего населения. Оказалось, что
псевдодефицитный аллель представляет из себя сочетание двух
мутаций в цис-положении. Одна из них - 3'-концевая ругуля-
торная мутация в первом сайте после стоп кодона, изменяет
сигнал полиаденилирования. Другая - миссенс мутация в 6-м
экзоне, приводит к потере сайта N-гликозилирования. Попутно
отметим, что для гена ARSA (также как и для IDUA-гена) обна-
ружен альтернативный сплайсинг, в результате которого в фиб-
робластах и печени образуются 2 различных типа мРНК, разме-
ром 2.1 кб и 3.9 кб, соответственно. У гомозигот по псевдо-
дефицитному аллелю в фибробластах отсутствует 2.1 кб мРНК,
при этом клинических проявлений заболеваний не наблюдается.
Однако, при наличии S96F мутации в ARSA-гене на фоне псевдо-
дефицитного аллеля развивается тяжелая форма лейкодистрофии.
В заключении раздела кратко рассмотрим состояние проб-
лемы генокоррекции лизосомных заболеваний. В литературе
отсутствуют сообщения об успешных клинических испытаниях
программ генотерапевтического лечения этих заболеваний, од-
нако, по крайней мере, для некоторых лизосомных болезней та-
кие программы уже разработаны и утверждены (см.Главу IX,
Табл.9.2). Имеются сведения о положительных результатах та-
ких исследований на культурах мутантных клеток и на модель-
ных животных. Так, в опытах in vitro был осуществлен успеш-
ный ретровирусный перенос нормальной кДНК гена GBA в культу-
рах мутантных фибробластов (Sorge et al.,1987) и в культурах
клеток крови пациентов с болезнью Гоше (Fink et al., 1990),
в результате чего была достигнута коррекция глюкоцеребрози-
дазной активности. Такая же коррекция метаболическоих дефек-
тов при болезни Ниманна-Пика и при синдроме Хантера была
достигнута путем введения в соответствующие мутантные линии
клеток нормальных кДНК генов SMPD1 и IDS соответственно. При
этом активность идуронат-2-сульфатазы после ретровирусной
трансдукции in vitro оказалась существенно выше нормальной и
рекомбинантный фермент активно участвовал в метаболизме глю-
козамногликанов. Генокоррекция первичного биохимического де-
фекта при мукополисахаридозе YII (синдром Слая) была получе-
на как in vitro, путем ретровирусного переноса нормального
гена GUSB в мутантные фибробласты человека, так и in vivo на
собаках и мышах. При этом у больных собак нормальный белок
(бета-глюкуронидаза) не только экспрессировался, но появ-
лялся в лизосомах и восстанавливал процессинг специфических
глюкозоаминогликанов (Wolf et al., 1990). Введение этого же
гена (GUSB) в мутантные стволовые клетки мышей приводило к
длительной экспрессии бета-глюкуронидазы, снижению лизосо-
мального накопления в печени и мозге и частичной коррекции
болезни у трансгенных животных (Wolf et al.,1992). В другом
эксперименте GUBS-кДНК вводили в культивируемые мутантные
фибробласты кожи мышей и затем трансдуцированные клетки имп-
лантировали подкожно мутантным мышам. У всех животных наблю-
дали экспрессию введенного гена и полное исчезновение ли-
зосомальных отложений в печени и в мозге (Sly, 1993). Полу-
ченные результаты подтверждают принципиальную возможность
лечения, по крайней мере, некоторых лизосомных болезней с
помощью методов генной терапии.
Раздел 10.3. Болезни экспансии, вызванные "динамически-
ми" мутациями.
Обнаруженный в 1991г. новый тип так называемых динами-
ческих мутаций и связанные с ними наследственные заболевания
частично рассматривались нами в Главе IV. Однако их уникаль-
ность, необычный механизм экспрессии, особенности наследова-
ния, быстрый рост нозологий, обусловленных подобными наруше-
ниями в последовательности ДНК, и, как оказалось, достаточно
широкая распространенность (см.Табл.9.2) делают целесообраз-
ным их более подробный анализ.
Как упоминалось, этот тип мутаций пока найден только у
человека и не зарегистрирован ни у одного вида млекопитающих
или других хорошо изученных организмов (дрозофила, нематоды
и пр.). Суть мутаций заключается в нарастании числа триплет-
ных повторов, расположенных в регуляторной или в кодирующей,
а значит и в транслируемой части генов. Впервые такой тип
мутации был обнаружен при молекулярном анализе синдрома фра-
гильной (ломкой) Х-хромосомы, наследственная передача кото-
рой не подчинялась обычным менделевским законам. В дальней-
шем аналогочные динамические мутации были описаны и при 7
других наследственных заболеваниях, контролируемых генами,
расположенными на разных хромосомах - Таблица 10.2. Вместе с
тем, все нижеперечисленные нозологии имеют ряд общих призна-
ков, позволяющих объеденить их в одну самостоятельную груп-
пу. Прежде всего, для триплетных повторов, экспансия которых
блокирует функцию гена, характерен выраженный популяционный
полиморфизм, причем число аллелей может варьировать от еди-
ниц до нескольких десятков. Другой их особенностью является
доминантный тип наследования, характерный как для Х-сцеплен-
ных генов, так и для генов, находящихся на аутосомах. Осо-
бенностью практически всех болезней "экспансии" является
также эффект антиципации (ожидания), смысл которого заключа-
ется в нарастании тяжести симптомов заболевания в последую-
щих поколениях, что, как оказалось, является результатом на-
копления ("экспансии") исходного числа триплетов после того
как их количество возрстает больше нормального. Характерными
для этих нозологий являются и особенности их передачи по-
томству: для некоторых заболеваний типична передача по мате-
ринской (Fra-X, миотоническая дистрофия), а для других -
преимущественно по отцовской линии (хорея Гентингтона).
Практически для всех "динамических" мутаций характерно пора-
жение головного мозга и особенно подкорковых структур, при-
чем тяжесть заболевания и его начало четко коррелируют с
числом повторов. Молекулярный анализ этих генов позволяет
предполагать определенное сходство механизма экспансии трип-
летов, которая, по всей вероятности, происходит в митозе,
затрагивает чаще аллели с начально большим числом повторов,
при этом нередко сигналом экспансии является утрата негомо-
логичного триплета, в норме разделяюего цепочку монотонных
повторов. Вместе с тем, патогенетические механизмы проявле-
ния мутаций экспансии принципиально различны. В случае раз-
личных вариантов FRAX мутаций наблюдается блок экспрессии
соответствующих генов вследствие стабильного метилирования
области CpG островка в промоторной части генов. При миотони-
ческой дистрофии нарушение экспрессии, по-видимому связано с
ошибками взаимодествия транскрибируемой нити ДНК с нуклеосо-
мами. В случае остальных сугубо нейродегенеративных заболе-
ваний (хорея Гентингтона, спинально-бульбарная мышечная ат-
рофия и др.) экспрессия гена не нарушена, однако, образую-
щийся белковый продукт с необычно длинной полиглутаминовой
цепочкой каким-то образом нарушает процессы нормального ме-
таболизма нервных клеток подкорковых отделов мозга.
Таким образом, причиной повреждающего действия одних
"динамических" мутаций является блок генной экспрессии, то
есть потеря функции (loss-of-function mutation), тогда как
другие мутации того же типа, связанные с нейродегенративными
заболеваниями, ведут к появлению белковых продуктов с ано-
мальными функциями ( мутации типа -gain-of-function). Инте-
ресно отметить, что помимо динамических мутаций для каждого
названного гена обнаружены единичные точковые мутации, число
которых крайне невелико. Для каждой болезни "экспансии" раз-
работан свой вариант диагностики, основанный на ПЦР. Ампли-
фикация области триплетных повторов и дальнейший электрофо-
ретический анализ синтезированных продуктов позволяет опре-
делить число повторов, то есть провести генотипирование ал-
лелей. Вместе с тем, при числе повторов более 200, амплифи-
кация с помощью ПЦР обычно не достигается. В этих случаях
размеры участка повторов определяются методом блот-гибриди-
зации с соответствующими ДНК зондами. Например, используются
зонды StB12.3, Ох1.9 или Ох 0.55 в случае синдрома FRAXA;
зонд cDNA25 в случае миотонической дистрофии.
Подробней с этой интересной группой заболеваний можно
ознакомиться в ряде обзоров (Willems, 1994; Баранов и
др.,1993; Иллариошкин и др., 1995).
Таблица 10.2. Болезни экспансии, вызванные динамическими му-
тациями.
-----------------------T-----------T-------T-----T------T------T----------------------¬ Болезнь, номер по ¦ Ген, лока-¦Триплет¦Норма¦Прему-¦Мута- ¦Литература ¦ МакКьюсику (MIM) ¦ лизация ¦ ¦ ¦тация ¦ция ¦ ¦ -----------------------+-----------+-------+-----+------+------+----------------------+ Синдром ломкой X-хро- ¦FMR1, FRAXA¦(CGG)n ¦5-50 ¦50-90 ¦>90 ¦Rousseau et al.,1991 ¦ мосомы; 309550¦Xq27.3 ¦ ¦ ¦ ¦ ¦Hirst et al.,1991 ¦ -----------------------+-----------+-------+-----+------+------+----------------------+ Синдром ломкой X-хро- ¦FMR2, FRAXE¦(CGG)n ¦6-25 ¦25-200¦>200 ¦Knight et al.,1994 ¦ мосомы тип 2; 309548¦Xq27.3 ¦ ¦ ¦ ¦ ¦ ¦ -----------------------+-----------+-------+-----+------+------+----------------------+ Миотоническая дистро- ¦DM, MP-1 ¦(CTG)n ¦5-10 ¦19-30 ¦>30 ¦Shelbourne et al.,1992¦ фия; 160900¦19q13.3 ¦ ¦ ¦ ¦ ¦Wieringa,1994 ¦ -----------------------+-----------+-------+-----+------+------+----------------------+ Хорея Гентингтона; ¦HD, IT-15 ¦(CAG)n ¦6-37 ¦ ¦37-121¦Huntington's Dis. ¦
143100¦4p16.3 ¦ ¦ ¦ ¦ ¦Collab.Res.Group,1993 ¦ -----------------------+-----------+-------+-----+------+------+----------------------+ Спинально-мозжечковая ¦SCA1 ¦(CAG)n ¦6-39 ¦ ¦41-81 ¦Orr et al.,1993 ¦ атаксия тип 1; 164400¦6p21.3 ¦ ¦ ¦ ¦ ¦Chung et al.,1993 ¦ -----------------------+-----------+-------+-----+------+------+----------------------+ Денто-рубральная-палли-¦DRPLA, B-37¦(CAG)n ¦7-34 ¦ ¦54-75 ¦ Koide et al.,1994 ¦ до-люисовая дегенерация¦12pter-p12 ¦ ¦ ¦ ¦ ¦ Nagafuchi et al.,1994¦
125370¦ ¦ ¦ ¦ ¦ ¦ ¦ -----------------------+-----------+-------+-----+------+------+----------------------+ Спинально-бульбарная ¦AR ¦(CAG)n ¦12-33¦ ¦40-62 ¦La Spada et al.,1991 ¦ мышечная атрофия;313200¦Xq11-q12 ¦ ¦ ¦ ¦ ¦ ¦ -----------------------+-----------+-------+-----+------+------+----------------------+ Спинально-мозжечковая ¦MJD ¦(CAG)n ¦13-36¦ ¦68-79 ¦Kawaguchi et al.,1994 ¦ дегенерация Мачадо- ¦14q32.1 ¦ ¦ ¦ ¦ ¦ ¦ Джозефа ¦ ¦ ¦ ¦ ¦ ¦ ¦ -----------------------+-----------+-------+-----+------+------+-----------------------
Раздел 10.4. Моногенные наследственные болезни, диаг-
ностируемые молекулярными методами в России.
Сводка, представленная в таблице 10.3, составлена на
основании анализа работ основных отечественных лабораторий и
публикаций, связанных с проблемой молекулярной диагностики
наследственных болезней. Сводка не является исчерпывающей и
включает преимущественно те заболевания для которых возможна
или уже проводится диагностика на внутриутробных стадиях
развития (Баранов, 1994).
Таблица 10.3. Моногенные наследственные болезни, диагности-
руемые молекулярными методами и доступные пренатальной диаг-
ностике в России.
-----T-----------------------------------T------------------¬
¦N пп¦ Болезни ¦Медицинские центры¦
+----+-----------------------------------+------------------+
¦1 ¦ Муковисцидоз ¦ИАГ;ИЭМ РЦМГ; ТИМГ¦
¦2 ¦ Миодистрофия Дюшенна/Беккера ¦ИАГ;РЦМГ; ТИМГ ¦
¦3 ¦ Гемофилия А ¦ИАГ; ГНЦ; ¦
¦4 ¦ Гемофилия В ¦ИАГ; ГНЦ ¦
¦5 ¦ Фенилкетонурия ¦ИАГ; ГНЦ;ПМА;РЦМГ ¦
¦6 ¦ Синдром ломкой Х-хромосомы ¦ИАГ; ¦
¦7 ¦ Миотоническая дистрофия ¦ИАГ ¦
¦8 ¦ Болезнь Виллебранда ¦ИАГ;ГНЦ ¦
¦9 ¦ Хорея Гентингтона ¦ИАГ; РЦМГ; НИИН ¦
¦10 ¦ Болезнь Леш-Нихана ¦ИАГ ¦
¦11 ¦ Спинально-бульбарная мышечная ¦ИАГ; НИИН ¦
¦ ¦ атрофия ¦ ¦
¦12 ¦ Гепато-лентикулярная дегенерация ¦РЦМГ; ИАГ ¦
¦13 ¦ Болезнь Хантера ¦ИАГ ¦
¦14 ¦ Адрено-генитальный синдром ¦ЦОЗМиР; РЦМГ ¦
¦15 ¦ Атаксия Фридрейха ¦ГНЦ ¦
¦16 ¦ в- Талассемия ¦ГНЦ; ПМА ¦
¦17 ¦ Болезнь Верднига-Гоффмана ¦РЦМГ ¦
¦18 ¦ Дефицит альфа-1-антитрипсина ¦ИЭМ ¦
¦19 ¦ Семейная гиперхолестеринемия ¦ИЭМ; ПМА ¦
¦20 ¦ Предрасположенность к инсулин- ¦ПМА ¦
¦ ¦ зависимому диабету ¦ ¦
¦21 ¦ Дефицит ацил-СоА дегидрогеназы ¦ПМА ¦
L----+-----------------------------------+-------------------
ИАГ - Институт Акушерства и Гинекологии РАМН, Санкт Петербург
ИЭМ - Институт Экспериментальной Медицины РАМН, Санкт Петербург
ПМА - Педиатрическая Медицинская Академия, Санкт Петербург
РЦМГ- Российский Центр Медцинской Генетики РАМН, Москва
ГНЦ - Гематалогический Научный Центр МЗ РФ, Москва
ТИМГ- Томский Институт Медицинской Генетики, Томск
НИИН- Научно-исследовательский Институт Неврологии РАМН, Москва
ЦОЗМиР- Центр Охраны Здоровья Матери и Ребенка, Москва
Молекулярные характеристики некоторых из приведенных в
таблице заболеваний уже были рассмотрены в разделах 10.1 и
... активных факторов в биосфере. Поэтому генетико-гигиеническое нормирование содержания подобных факторов в окружающей среде является обязательным компонентом профилактики заболеваемости человека. Генетика человека на этапе ее становления обозначалась в нашей стране в духе времени – евгеникой. Обсуждение возможностей евгеники, совпавшее по времени со стартом и быстрым развитием генетических ...
нетика, микробиология, вирусология. Генетика человека — раздел генетики, изучающий закономерности наследования и изменчивости признаков у человека. Глава 2. Русские учёные в развитии генетики генетика наследственность ученый лобашев филипченко Филипченко Юрий Александрович У истоков отечественной генетики стояли выдающиеся ученые, которые пришли в новую науку из традиционных биологических ...
... в практику, должны быть разработаны методы для установления степени риска либо в отдельных семьях, либо путем скринирования всех родителей. Это изменит назначение медицинской генетики от генетики, консультирующей ретроспективно, к службе генетического предупреждения на перспективной основе. Может возникнуть новое отношение к ответственности родителей к воспроизводству потомства, которое вместе с ...
... гнезда", "Войны и мира", "Вишневого сада". Важно и то, что главный герой романа как бы открывает целую галерею "лишних людей" в русской литературе: Печорин, Рудин, Обломов. Анализируя роман "Евгений Онегин", Белинский указал, что в начале XIX века образованное дворянство было тем сословием, "в котором почти исключительно выразился прогресс русского общества", и что в "Онегине" Пушкин "решился ...
0 комментариев