000 STS, подавляющее большинство которых представляет собой
тандемные повторы 2 - 4 нуклеотидов. Благодаря выраженной
индивидуальной специфичности и достаточно стабильному менде-
левскому типу наследования STS-сайты нашли широкое примене-
ние и в молекулярной диагностике генных болезней, прежде
всего в качестве молекулярных маркеров для идентификации му-
тантных хромосом в семьях высокого риска (см. Главу VII).
Наличие большого числа гипервариабильных микро- и минисател-
литных последовательностей ДНК является характерной особен-
ностью генома человека. Аналогичные последовательности, об-
наруженные в геноме приматов, значительно более однородны,
что доказывает возможность существенного увеличения вариа-
бильности этих участков ДНК за сравнительно короткий эволю-
ционный промежуток (Юров,1988; Gray et al., 1991).
Сведения о мутабильности высокополиморфных последова-
тельностей в геноме человека весьма противоречивы. Показано,
однако, что в наиболее вариабильных минисателлитных локусах
частота мутаций может достигать 5% на гамету (Jeffreys et
al., 1988). Предполагается, что одной из главных функций ги-
первариабильных микро- и минисателлитных последовательностей
ДНК может быть контроль гомологичной рекомбинации в мейозе.
На культурах клеток показано стимулирующее влияние миниса-
теллитных последовательностей ДНК на гомологичную рекомбина-
цию. Так, инсерция синтезированной последовательности,
составленной на основе гипервариабильных минисателлитов в
геномную ДНК приводит к более, чем 10-кратному увеличению
числа реципрокных обменов, причем степень этого влияния об-
ратно пропорциональна расстоянию между STR и сайтом рекомби-
нации (Wahls et al., 1990). Вместе с тем, многие авторы об-
ращают внимание на достаточно высокую стабильность миниса-
теллитных аллелей, что позволяет их широко использовать как
для генетического маркирования, так и для популяционных
исследований и идентификации личности методом ДНК-фингерп-
ринта (Decorte,Cassiman 1993; Edwards et al.,1991; Ива-
нов,1989).
Для многих мутаций, локализованных в некодирующих
частях генома, характерны высокие уровни популяционного по-
лиморфизма. Необходимо, однако, подчеркнуть, что эта измен-
чивость не затрагивает общей структуры генома, определяющей
различия между видами. Более того, сопосталение первичных
нуклеотидных последовательностей сравнительно протяженных
секвенированных участков ДНК (области Т-рецепторных генов
длиной около 100 кб) обнаружило сохранение высокой степени
гомологии не только в кодирующих, но и, что особенно удиви-
тельно, в некодирующих частях этих последовательностей. Если
учесть, что эволюционно человек и мышь разделены почти 80
миллионами лет эволюции, эти данные рассматриваются как сви-
детельство функциональной значимости некодирующих частей
этих генов По-видимому, далеко не всякие мутации в некодиру-
ющих районах ДНК являются нейтральными и в определенных слу-
чаях они могут отрицательно влиять на жизнеспособность. К
сожалению, в настоящее время ничего или почти ничего неиз-
вестно о функциях некодирующих ДНК-последовательностей.
Высказывалось даже предположение, что их единственной функ-
цией является репликация. Отсюда возникло представление об
"эгоистической" или "паразитической" ДНК. Конечно, полностью
исключить наличие подобных паразитических последователь-
ностей ДНК в любом геноме нельзя. Тем ни менее, представля-
ется маловероятным, что значительная часть генома человека,
также как и других видов, относится к эгоистической ДНК.
По-видимому, наши знания о роли некодирующей или, как еще
говорят, "избыточной" ДНК все еще явно недостаточны. Ста-
бильность структурной организации генома в пределах вида
свидетельствует скорее о важной эволюционной роли некодирую-
щих ДНК-последовательностей и об их участии в процессах он-
тогенеза. Можно предполагать, что ответ на этот интригующий
вопрос в какой-то мере будет получен при расшифровке и срав-
нении полной первичной нуклеотидной последовательности гено-
мов у животных разных видов и, прежде всего, у человека и
мыши, где прогресс в секвенировании геномной ДНК особенно
значителен (см.Главу III). Уместно заметить, что проведенный
недавно компьютерный анализ генома человека позволяет пред-
полагать наличие в его некодирующей части особого, пока еще
непонятного генетического кода, смысл и значение которого
остаются загадочными ( ?).
Раздел 2.7 Мобильность генома, облигатные и факульта-
тивные элементы генома.
До сих пор мы рассматривали основные структурные эле-
менты генома человека, положение которых в соответствии с
представлениями классической генетики достаточно постоянно.
Начиная с 50-х годов стали накапливаться данные о существо-
вании большого числа мобильных генетических элементов,
присутствие которых в геноме не является обязательным, а их
топография и количество может варьировать в различных клет-
ках, тканях и у разных индивидуумов (McClintock, 1984; Berg,
Howe, 1989). У прокариот такие элементы получили название
транспозонов. Их структура и функции достаточно хорошо изу-
чены. Отличительной особенностью мобильных элементов явля-
ется способность существовать как в интегрированном с хро-
мосомой виде, так и в виде отдельных макромолекул - эписом,
плазмид, вирусных частиц. Почти 50 различных семейств мо-
бильных элементов описано у дрозофилы . Вместе эти последо-
вательности составляют около 12% гаплоидного набора
(Golubovsky, 1995). В геноме млекопитающих содержится до 50
000 диспергированных копий ретропозона LINE размером около
6500 пар основанийю. Семейство Alu- повторов, содержащее от
300 до 500 тысяч копий, также относится к числу мобильных
элементов генома (Сharlesworth et al.,1994). Явление лизоге-
нии, то есть присутствие вирусных последовательностей в
составе ДНК человека и наличие фрагментов генов человека в
вирусных геномах, служит одним из примеров мобильности ДНК и
возможности "горизонтальной" передачи наследственно закреп-
ленных признаков между видами. Мобильные ДНК, как правило,
относятся к факультативным элементам. Как уже отмечалось, не
существует четких границ между облигатными и факультативными
элементами генома, так как возможен взаимный переход от од-
ного состояния к другому. Структурные локусы или сегменты
хромосом могут трансформироваться в факультативные элементы
за счет амплификации, интеграции в мобильные элементы или
путем образования цитоплазматических ретротранскриптов. Об-
ратный переход от факультативных элементов к облигатным осу-
ществляется посредством инсерций, транспозон-индуцированных
перестроек и обратной транскрипции.
Факультативные элементы существуют в геноме как популя-
ции информативных макромолекул. Изменения, возникающие в них
под воздействием внешних факторов, носят совершенно иной ха-
рактер по сравнению с классическими мутациями в структурных
локусах. Для описания изменений в факультативных элементах
предложен термин " вариации" (Голубовский, 1985). Этот тер-
мин впервые использован Жакобом и Воллманом для описания по-
ведения эписом (Jacob, Wollman, 1961). Вариации могут приво-
дить к изменениям на генотипическом уровне, то есть к мута-
циям, вследствие простого перемещения факультативных элемен-
тов или сдвига в соотношении между факультативными и обли-
гатными элементами. В этих случаях мутации встречаются од-
новременно у многих индивидуумов. Подобные изменения упоря-
дочены, могут происходить сразу во многих локусах и отлича-
ются высокой сайт-специфичностью. Локализация структурных
перестроек, возникающих в результате вариаций, предопределе-
на первоначальной топографией факультативных элементов на
хромосомах. И наконец, сами вариации могут быть индуцированы
обычными "не-мутагенными" факторами, такими как температура
или межлинейные кроссы (Golubovsky, 1995). Факультативные
элементы могут рассматриваться как оперативная память гено-
ма, так как во многих случаях спонтанное возникновение мута-
ций в облигатных элементах опосредовано их активацией. Счи-
тается, в частности, что инсерционный мутагенез является
причиной спонтанного возникновения 70% видимых мутаций в
природных популяциях дрозофилы. Однако, у человека пока за-
регистрированы лишь единичные случаи возникновения мутаций
вследствие перемещения мобильных элементов генома (Vidaud et
al.,1993).
Раздел 2.8 Изохоры, метилирование, гиперчувствительные
сайты.
Перечисленные выше компоненты генома не случайным обра-
зом связаны с последовательностями нуклеотидов. И в этом
смысле можно говорить о существовании в геноме человека
структур более высокого иерархического порядка. Примером
служат изохоры - длинные, в среднем, свыше 300 кб сегменты
ДНК, гомогенные по композиции оснований или по GC-уровням.
62% генома состоит из GC-бедных изохор и в них локализовано
около 34% генов, 31% генома представлен GC-богатыми изохора-
ми, содержащими 38% генов, и в 3% изохор, обогащенных
GC-последовательностями (так называемых H3 изохор), нахо-
дится 28% генов (Mouchiroud et al., 1991; Saссone et al.,
1993). Таким образом, существуют относительно небольшие
участки ДНК, в которых плотность генов в 10 -20 раз выше,
чем в остальных последовательностях.
Другой общей чертой генома человека является то, что in
vivo значительная доля цитозиновых остатков в молекуле ДНК
метилирована, то-есть находится в форме 5-метилдезоксицити-
дина. Экспериментальное изучение характера метилирования
основано на сопоставлении рестрикционных фрагметов, образую-
щихся после обработки ДНК эндонуклеазами, для которых сайты
узнавания одинаковы и содержат в своем составе цитозин, но
действуют эти ферменты по-разному, в зависимости от того,
находится ли это основание в метилированном состоянии или
нет. В частности, рестриктазы - Msp1 и Hpa11, узнают после-
довательность CCGG, но в отличие от Msp1, Hpa11 не расщепля-
ет ДНК в тех сайтах, где внутренний CpG динуклеотид метили-
рован. Некоторые сегменты генома, особенно это относится к
повторяющимся последовательностям, полностью метилированы в
местах 5'-CCGG-3' и частично метилированы в 5'-GCGC-3' -
сайтах рестрикции для Hha1. В других сегментах наблюдается
характерный рисунок частичного метилирования в 5'-CCGG-3'
последовательностях (Behn-Krappa et al., 1991). Различные
индивидуумы, независимо от их этнического происхождения,
практически не различаются по характеру метилирования ДНК в
одних и тех же типах тканей, тогда как в процессе онтогене-
тической дифференцировки происходят значительные изменения
рисунков метилирования. В перевиваемых культурах клеток опу-
холевого происхождения число метилированных сайтов резко
уменьшено.
Высказано предположение о наличии прямой связи между
метилированием ДНК и состоянием генетической активности в
клетках. Существует класс белков, которые специфическим об-
разом связываются с метилированными участками ДНК, делая их
недоступными для действия ряда ферментов, в том числе, воз-
можно, и для полимераз. Получено много прямых эксперимен-
тальных доказательств роли метилирования ДНК в инактивации
эукариотических промоторов, а, значит, и в регуляции актив-
ности генов. Напротив, гипометилирование промоторной области
генов, в особенности CpG островков, как правило, свиде-
тельствует о функциональной активности генов. Показано, что
необычные структуры в молекуле ДНК, также как экзогенная
ДНК, инкорпорированная в процессе генетической трансформа-
ции, нередко подвергаются метилированию. Известно, что мети-
лирование играет важную роль в инактивации X хромосомы у са-
мок, в регуляции экспрессии генов в процессе развития, а
также непосредственно вовлечено в феномен хромосомного (ге-
номного) импринтинга, связанного с различиями пенетрантности
некоторых аллелей в зависимости от их происхождения, то есть
прохождения через материнский или отцовский гаметогенез (Ба-
ранов, 1991).
В GC-богатых изохорах локализовано большое количество
CpG островков - последовательностей от 500 до 2000 п.о., ха-
рактеризующихся очень высоким содержанием гуанина и цитозина
(G+C > 60%), представленных в виде кластеров неметилирован-
ных CpG дуплетов и, так называемых, G/C боксов - локусов,
родственных сайту узнавания для одного из транскрипционных
факторов Sp1 - (G)4C(G)4C (Lindsay, Bird, 1987; Bird, 1986;
Aissani, Bernardi, 1991). CpG острова содержат много сайтов
узнавания для чувствительной к метилированию эндонуклеазы
HpaII, а также сайты для редкощепящих рестриктаз, узнающих
неметилированные CpG дуплеты. В частности, более 80%
Nor1-сайтов связано с CpG-богатыми островками. Как правило,
CpG островки локализованы в 5'- фланкирующих последователь-
ностях, 5'-зкзонах и 5'-интронах всех изученных хаузки-
пинг-генов и 40% тканеспецифических генов. CpG островки яв-
ляются характерной особенностью транскрибируемых участков
генома. Их идентификация в клонированных последовательностях
геномных библиотек существенно облегчает поиск конкретных
структурных генов (см.раздел 2.4) . Наибольшая плотность CpG
островков наблюдается в теломерных участках хромосом 1, 9,
15, 16, 17, 19, 20, 22 (Antonarakis,1994). Точные молекуляр-
ные методы регистрации СрG островков показали, что их число
в геноме человека приближается к 45000 (
Antequera,Bird,1993).
Можно также отметить существование в геноме человека
сайтов, гиперчувствительных к действию ДНК-азы 1 и структур-
но отличающихся от основной массы хроматина. Присутствие та-
ких сайтов показано для многих генов млекопитающих и, по-ви-
димому, это необходимое, но не достаточное условие их
экспрессии. Локализация гиперчувствительных сайтов может ме-
няться в процессе развития и под действием гормонов. В неко-
торых случаях эти участки маркируют положение транскрипцион-
ных регуляторных элементов генома, действующих как в положи-
тельном, так и в отрицательном направлениях. В других случа-
ях это области функционально активных генов, находящихся в
деспирализованном состоянии и имеющих однонитевую структуру.
Именно такие однонитевые участки ДНК особенно выско чувстви-
тельны к ДНК-азе 1. На этом их свойстве основан метод
ник-трансляции in situ, позволяющий непосредственно на хро-
мосомных препаратах визуализировать функционально активные
районы хромосом. С этой целью хромосомные препараты обраба-
тывают ДНК-азой 1, после чего непосредственно на них с по-
мощью ДНК-полимеразы проводят синтез ДНК в присутствии мече-
ных нуклеотидов. При этом метка включается преимущественно
только в те участки хромосом,где находятся функционально ак-
тивные гены (Verma, Babu, 1989).
ГЛАВА YIII.
БИОЛОГИЧЕСКИЕ МОДЕЛИ НАСЛЕДСТВЕННЫХ БОЛЕЗНЕЙ ЧЕЛОВЕКА.
Раздел 8.1. Генетические линии животных.
Большая роль в исследовании проблем генетики челове-
ка и медицинской генетики принадлежит мутантным генетическим
линиям животных и, в особенности, генетическим линиям мышей
(Конюхов, 1969, 1980; Корочкин, 1978). Высокий процент
сходства по нуклеотидными последовательностям между кодирую-
щими, регуляторными и даже интронными областями гомологичных
генов млекопитающих и человека, а также наличие большого
числа консервативных групп сцепления с идентичным расположе-
нием генов наряду с возможностями использования очень мощных
экспериментальных подходов для идентификации и клонирования
генов линейных животных позволяют проводить параллельные
исследования, значительно ускоряющие эффективность поиска и
молекулярного анализа индивидуальных генов человека.
Для многих моногенных заболеваний человека животные,
несущие мутации в гомологичных генах, являются лучшими, а
зачастую и единственными моделями для исследования молеку-
лярных основ патогенеза и отработки оптимальных схем лече-
ния, в том числе и с применением методов генной терапии
(см.Главу IX). Поиск таких биологических моделей, прежде
всего, ведется, среди уже существующих генетических линий
животных с установленным типом наследования определенных
аномальных признаков. Наиболее трудным при этом является до-
казательство идентичности мутантных генов и, соответственно
первичных биохимических дефектов, у человека и у линейных
животных.
В различных питомниках мира, в том числе и в России,
созданы и поддерживаются кллекции, насчитывающие от десятков
до несколько сотен генетических линий различных эксперимен-
тальных животных - мышей, крыс, кроликов, собак и др. (Коню-
хов, 1969; 1980; Staat, 1969; Hogan et al, 1989; Бландова и
др., 1990). Среди них генетические линии мышей наиболее мно-
гочислены в первую очередь из-за высокой плодовитости,
удобства содержания, относительной легкости эксперименталь-
ного манипулирования и целого ряда других причин. Некоторые
из этих линий представляют собой случайные находки, другие,
а их большинство, получены в результате действия различных
мутагенных факторов. Так, значительное число биологических
моделей было получено путем биохимической селекции потомства
мышей самцов, обработанных сильными мутагенами - этилнитроз-
мочевиной, триэтиленмеламином или облученных Рентгеном. Так
были смоделированы на мышах альфа-талассемия, полицитемия,
почечный ацидоз (Erickson, 1988). Однако, такой способ полу-
чения животных-моделей, хотя и более эффективен, чем поиск
спонтанно мутировавших особей, также основан на чистой слу-
чайности и не позволяет направленно менять структуру нужного
гена.
Процесс создания подобных генетических линий обычно
включает отбор особей с фенотипическими отклонениями; анализ
наследования этих фенотипческих признаков; длительное близ-
кородственное разведение отселектированных особей. При моно-
генном наследовании такие линии могут либо целиком состоять
из мутантных гомозигот, либо поддерживаться через гетерози-
готных особей в случае сниженной жизнеспособности и наруше-
ния плодовитости у гомозигот.
На первом этапе поиска адекватной модели какого-либо
моногенного наследственного заболевания руководствуются
сходством клинических проявлений течения болезни и фенотипом
мутантных животных. Однако, одного этого сходства недоста-
точно (Конюхов, 1969). Необходимо доказать гомологичность
генотипической природы наблюдаемых нарушений, то есть дока-
зать, что у человека и у животных (мышей) фенотипические из-
менения обусловлены мутациями в гомологичных генах. Огромная
мировая генетическая коллекция мышей насчитывет несколько
сотен линий, в каждой из которых различные дефекты наследу-
ются по моногенному типу. Спонтанные биологические модели
наследственных болезней известны и достаточно полно изучены
для многих других экспериментальных и домашних животных.
Представляется удивительным, что, несмотря на большое
сходство геномов млекопитающих и наличие близких по первич-
ной структуре и тождественных по функциям структурных генов,
для значительной части наследственных болезней человека ге-
нетические аналоги среди животных до сих пор не найдены (Ко-
нюхов, 1969).
Это ограничение в настоящее время может быть преодалено
путем целенаправленного конструирования генетических модель-
ных линий животных. Экспериментальные основы такого подхода
уже хорошо разработаны (Erickson, 1988; Аллен и др., 1990;
Melton, 1993; Stewart et al., 1994). Для этого используют
технику культивирования и трансфекции эмбриональных стволо-
вых клеток (см.ниже), отбор in vitro клонов с нужными генет-
ческим изменениями и пересадку их в зародыши или в сомати-
ческие ткани животных. Для анализа экспрессии мутантных ге-
нов in vivo и оценки их биологического действия особенно
удобными оказались трансгенные животные.
Раздел 8.2. Трансгенные животные.
Трансгенных животных получают в результате искусствен-
ного введения - трансгеноза, чужеродного генетического мате-
риала, представляющего из себя фрагмент гена или иную после-
довательности ДНК, в оплодотворенную яйцеклетку или в ранние
зародыши млекопитающих. Подобные модели являются идеальными
экспериментальными системами для исследования молекуляр-
но-генетических основ онтогенеза, для изучения функции чуже-
родного гена, оценки его биологического действия на орга-
низм, а также для производства различных манипуляций со спе-
цифическими клеточными клонами in vivo. Разработано несколь-
ко способов получения трансгенных животных. Исторически бо-
лее ранним и широко применяемым до настоящего времени явля-
ется микроиньекция чужеродной ДНК в пронуклеус - ядро опло-
дотворенной яйцеклетки. Существуют детальные описания этого
метода (Аллен и др., 1990; Hogan et al, 1989). Суть метода
состоит в том, что под контролем микроскопа при помощи мик-
романипулятора в мужской пронуклеус оплодотворенной яйцек-
летки тонкой иглой (до 1 микрона) вводят около 2 пиколитров
раствора ДНК. Чужеродная ДНК, вначале свободно лежащая в
нуклеоплазме, в течение нескольких последующих делений дроб-
ления случайным образом интегрирует в один из сайтов ка-
кой-либо хромосомы, то есть встраивается в ДНК-реципиента.
При этом, как показали эксперименты с меченой ДНК, в различ-
ных бластомерах одного и того же дробящегося зародыша интег-
рация может происходить в разные хромсомные сайты и число
интегрированных копий ДНК в каждом из этих сайтов может зна-
чительно варьировать. Тем не менее, поскольку сам эмбрион
развивается, по-сути, из одного бластомера, во всех клетках
такой особи после рождения чужеродная ДНК обычно находится
только в одном каком-нибудь хромосомном сайте, хотя у разных
особей она интегрируется по-разному и в разные сайты. После
введения чужеродной ДНК в пронуклеус яйцеклетку транспланти-
руют самке-реципиенту. Доля трансгенных животных в потомстве
таких самок варьирует от 10% до 30%. Это означает, что по-
добный механический вариант трансфекции чужеродных генов на
ранней стадии эмбриогенеза является чрезвычайно эффективным.
Идентификацию трансгенных животных производят путем анализа
геномной ДНК на наличие экзогенных последовательностей, ис-
пользуя при этом методы блот-гибридизации или ПЦР. Экспрес-
сию введенного гена анализируют путем идентификации специфи-
ческих мРНК и/или соответствующих белковых продуктов в раз-
личных тканях трансгенного животного.
Другой, более более прогрессивный способ получения
трансгенных животных основан на том, что трансфекции подвер-
гается не зигота, а тотипотентные эмбриональные стволовые
клетки (см.ниже), которые затем трансплантируют в полость
бластоцисты (Gardner, 1978). Этот метод и его решающие преи-
мущества в плане генетического моделирования подробно
рассмотрены в разделе 8.4.
Как правило, иньецированная ДНК при встраивании в хро-
мосому образует блок из множества тандемно расположенных ко-
пий, при этом число единиц повтора в блоке у разных
особей может варьировать от единицы до нескольких сотен.
После интеграции введенной ДНК в хромосому различные генети-
ческие конструкции устойчивы и стабильно передаются по-
томству в соответствии с законами Менделя. Встраивание вве-
денной ДНК в функционально значимые области генома может
приводить к их дестабилизации и сопровождаться появлением
мутаций, спектр которых очень разнообразен. Таким образом,
животные, полученные при введении одного и того же гена, бу-
дут различаться как по сайтам интеграции, так и по количест-
ву копий встроенной чужеродной ДНК, а в некоторых случаях,
по уровню мутабильности и по типам индуцированных мутаций.
Таким образом, каждое трансгенное животное в этом смысле
уникально.
Трансгенные животные являются черезвычайно удобным обь-
ектом для анализа роли отдельных элементов гена в регуляции
его работы. Так, сопоставление характера экспрессии введен-
ного гена у животных, различающихся по длине фланнкирующих
последовательностей иньецированной ДНК, дает возможность об-
наружить элементы гена, контролирующие его работу в разных
типах тканей. Для облегчения анализа регуляторных последова-
тельностей гена часто вводят генетические конструкции, соче-
тающие эти элементы с геном-репортером, экспрессия которого
выражается в появлении известной и легко определяемой фер-
ментативной активности. Использование для трансгеноза реком-
бинантных молекул ДНК, представляющих собой различные комби-
нации регуляторных элементов и кодирующих последовательнос-
тей, ведет к более глубокому пониманию молекулярных механиз-
мов активации генов в разных типах тканей.
Как уже указывалось, случайный характер интеграции чуже-
родной ДНК нередко индуцирует мутации и нарушает экспрессию
нормальных генов реципиента. В ряде случаев наблюдаемые отк-
лонения в развитии оказываются аналогичными или сходными с
уже известными наследственными нарушениями у человека и по-
добные животные также могут использоваться в качестве гене-
тических моделей заболеваний. Этот подход был применен для
получения моделей таких заболеваний, в патогенезе которых
решающую роль играет эффект дозы генов. В частности, путем
трансфекции зиготы мышей генами бета-глобина, коллагена, ре-
нина, антигенов гистосовместимости удалось получить биологи-
ческие модели таких заболеваний, как бета-талассемия, несо-
вершенный остеогенез, гипертония и диабет, соответственно
(Erickson, 1988). Во всех перечисленных случаях введение до-
полнительной дозы экспрессирующего гена приводило к наруше-
нию балланса белковых генопродуктов в клетках и, как следс-
твие этого, было причиной патологических процессов.
Раздел 8.3. Экспериментальное моделирование.
Другой вариант биологического моделирования основан на
получении животных с определенными очень специфичными, но
ненаследственными изменениями. Эти животные также могут быть
использованы для анализа молекулярных основ патогенеза и
разработки методов адекватного лечения. Рассмотрим несколько
примеров подобного экспериментального моделирования.
Описанная технология трансгеноза (введение генов в про-
нуклеус) может быть использована, в частности, для направ-
ленного получения животных с избирательными дефектами
(уродствами) тех или иных тканей и органов. Метод заключает-
ся в возможности селективной элиминации тех специфических
типов клеток, которые отсутствуют или дефектны у больных с
моделируемым типом заболевания. Такие животные могут быть
получены при иньекции в зародыш рекомбинантной ДНК, содержа-
щей какой-либо цитотоксический ген, например, ген дифтерий-
ного токсина, находящийся под контролем работающих в опреде-
ленных типах клеток регуляторных элементов ДНК. При актива-
ции этих контролирующих элементов на определеной стадии раз-
вития экспрессия токсического гена приводит к избирательной
гибели всей специфической популяции клеток, то есть такая
система действует как очень точный скальпель.
Дальнейшая модификация метода заключается в использова-
нии для трансгеноза условно летального гена, каким является,
например, ген тимидинкиназы вируса Герпеса. Клетки,
экспрессирующие этот ген, функционируют совершенно нормаль-
но. Однако, на любой стадии онтогенетического развития можно
вызвать их селективную гибель при введении животному ганцик-
ловира - противогерпесного препарата. Эта система дает боль-
ше возможностей для экспериментального анализа роли специфи-
ческих клонов клеток в процессе нормального развития, а так-
же для изучения патологичеких процессов, связанных с гибелью
этих клеток. Подобная методология используется также при
разработке генотерапевтических подходов для лечения некото-
рых ненаследственных, в частности онкологических заболева-
ний (см Главу IX).
Весьма многообещающим методом моделирования представля-
ется направленное выключение работы определенных генов путем
введения в доимплантационные зародыши антисмысловых мРНК.
Такой подход был применен, в частности, при попытке модели-
рования болезни Гоше - лизосомного заболевания, обусловлен-
ного дефицитом бета-глюкуронидазы (Bevilacqua et al., 1988).
Естественно, что в этом случае выключение экспрессии гена
носит транзиторный характер, то есть моделью, по-сути, явля-
ется само животное - реципиент антисмысловой мРНК матрицы.
Другой пример экспериментального моделирования основан
на пересадке тканей или клеток атимусным иммунодефицитным
мышам nu/nu. У мышей этой линии в связи с отсутствием тимуса
и выраженным врожденным иммунодефицитом не происходит оттор-
жение трансплантированных чужеродных тканей. Более того, у
таких животных может происходить дифференцировка трансплан-
тированных подкожно эмбриональных зачатков и регенерация пе-
ресаженных кусочков тканей из различных органов других видов
животных и человека. Так например, кусочки трахеи крысы с
нанесенными на них клетками бронхогенного эпителия человека,
имплантированные подкожно атимусным мышам, формируют струк-
туру поверхностного эпителия, сходную с той, которая имеется
в бронхах человека. Именно таким путем мыши nu/nu были ак-
тивно использованы для анализа экспрессии мутантных вариан-
тов гена муковисцидоза человека, а также для испытания эф-
фективности коррекции этого генетического дефекта с помощью
методов генотерапии. В последнем случае мутантные эпители-
альные клетки пациентов с муковисцидозом вначале подвергали
трансфекции ретровирусными или аденовирусными векторами, не-
сущими, наряду с геном - репортером, полноразмерную кДНК
нормального гена муковисцидоза. Относительная простота по-
добных моделей и возможность генетического манипулирования с
клетками человека до их трансплантации атимусным мышам дела-
ют этот подход весьма привлекательным для решения многих
экспериментальных вопросов. Основные недостатки таких моде-
лей связаны с трудностями содержания и разведения атимусных
мышей и их низкой жизнеспособностью. Генетические линии жи-
вотных в этом отношении имеют значительные преимущества.
Раздел 8.4. Конструирование модельных генетических ли-
ний животных.
Современный уровень экспериментальной эмбриологии мле-
копитающих и современные достижения молекулярной генетики
позволяют осуществлять направленное получение генетических
моделей наследственных болезней путем введения сайт-специфи-
ческих модификаций в геном млекопитающих. Такой значительный
качественный прорыв в генетическом моделировании стал возмо-
жен благодаря появлению принципиально новой технологии мани-
пулирования с ранними зародышами млекопитающих. Особенно
важными в этом отношении оказались два новых методических
подхода: получение зародышей-химер, состоящих из клеточных
клонов разных зигот, путем введения тотипотентных клеток в
полость бластоцисты (Gardner, 1978) и разработка технологии
культивирования клеточных векторов, так называемых эмбрио-
нальных стволовых клеток (Evans, Kaufman, 1981). С другой
стороны, появились методы сайт-специфического переноса кло-
нированных последовательностей ДНК в геном эукариот, осно-
ванные на отборе клеточных клонов, в которых после трансфек-
ции происходит инсерция экзогенной ДНК в гомологичном сайте
геномной ДНК без какого-либо нарушения последовательности
ДНК в месте встраивания.
Конструированию генетических моделей должны предшество-
вать идентификация и сравнительный анализ двух гетерологич-
ных генов - гена человека, вследствие нарушения работы кото-
рого развивается моделируемое заболевание, и его гомолога у
выбранного для моделирования животного. При выборе обьекта
моделирования, в первую очередь, руководствуются методичес-
кими возможностями экспериментального манипулирования с жи-
вотными. Важное значение имеет сходство кодирующих областей
гетерологичных генов по нуклеотидным последовательностям. В
большинстве случаев мыши представляются наиболее удобным
обьектом для моделирования. Современный алгоритм формирова-
ния генетической линии животных с мутациями в заданном гене
предполагает: (1) наличие культур тотипотентных, то есть
способных к неограниченному развитию и дифференцировке, эмб-
риональных стволовых клеток; (2) создание на базе рекомби-
нантных ДНК генно-инженерных конструкций для направленного
переноса генов; (3) трансфекцию этих конструкций в культуры
эмбриональных стволовых клеток последующим скринингом и от-
бором клонов со специфическими генетическими модификациями;
(4) введение отобранных модифицированных клеток в зародыш на
стадии бластоцисты по методу Гарднера с целью получения хи-
мерных трансгенных животных; (5) отбор химерных особей, не-
сущих модифицированные гены в различных тканях и органах;
(6) селекцию особей, гетерозиготных по данной мутации; (7)
инбредное разведение и селекцию гомозигот (Рис.8.1).
Как упоминалось ранее, идеальной системой для направ-
ленного переноса мутаций в геном млекопитающих являются эмб-
риональные стволовые клетки - ЭСК (Evans, Kaufman, 1981;
Erickson, 1988; Labosky et al., 1994). Первичные культуры
этих клеток получают из клеток бластоцисты (внутренней кле-
точной массы) или из первичных половых клеток ранних пос-
тимплантационных зародышей. При выращивании на питательном
слое из эмбриональных фибробластов ЭСК сохраняются в недиф-
ференцированном состоянии от трех месяцев до года. При этом
они могут быть несколько раз заморожены и оттаяны без потери
способности к дифференцировке. ЭСК, введенные в бластоцель
(полость бластоцисты), сохраняют свою тотипотентность и мо-
гут участвовать в формировании, практически, всех эмбрио-
нальных зачатков и органов развивающегося зародыша. В ре-
зультате образуется животное - химера, состоящее из клеточ-
ных клонов двух разных типов: клеток исходного родительского
генотипа и ЭСК. Если эти клетки различаются, например, по
генам окраски шерсти, животное - химера будет иметь попереч-
ную или пятнистую окрашенность. При этом все животные, неза-
висимым образом полученные в результате введения в одинако-
вые по генотипу зародыши одной и той же линии клеток, будут
отличаться друг от друга по характеру пятнистости, так как
все химеры различны по набору клеточных клонов, развившихся
и дифференцировавшихся из введенных в зародыш ЭСК. Химерные
животные, у которых ЭСК дифференцировались в половые клетки
и дали начало полноценным зрелым гаметам будут устойчиво пе-
редавать своим потомкам генетическую информацию, содержащую-
ся в ЭСК. Таких животных ингда называют зародышевыми транс-
миттерами. При скрещивании их с мышами дикого типа часть по-
томков будет уже гетерозиготна по мутантным генам ЭСК, то
есть будут нести мутацию в гаплоидном состоянии в каждом ти-
пе клеток. Это в равной степени относится и к мутациям, ис-
кусственно введенным предварительно в ЭСК. Скрещивая таких
гетерозигот, можно получить животных, гомозиготных по задан-
ной мутации. Естественно, последнее достижимо только в том
случае, если мутация не окажется летальной в гомозиготном
состоянии у животных этого вида.
Возможность вести селекцию нужных мутантных или
трансгенных клонов ЭСК и лишь затем их использовать в ка-
честве клеточных векторов нашло широкое применение в генети-
ческом моделировании. Первоначально для этой цели ЭСК обра-
батывали различными мутагенами (этилнитрозомочевиной) отби-
рали клоны клеток, несущих мутацию в нужном гене, и затем
использовали их для создания инъекционных химер по Гарднеру.
Таким способом на мышах была получена модель болезни Леш-Ни-
хана - мутация гена гипоксантин-фосфорибозил-трансферазы
(Hooper et al.,1987). C разработкой технологии адресной
доставки чужеродной ДНК в гены-мишени этот способ генети-
ческого моделирования стал особенно эффективным. Сайт-специ-
фическая модификация генов ЭСК достигается за счет гомоло-
гичной рекомбинации между экзогенной и хромосомной ДНК. При
трансфекции большая часть проникших в ядра молекул рекомби-
нантной ДНК сохраняется там в течение двух-трех дней в виде
кольцевых эписом и в дальнейшем теряется либо происходит ин-
теграция трансфецирующей плазмиды в геном клетки- хозяина
путем негомологичной рекомбинации, то есть в случайные сайты
хромосомной ДНК. В таких клетках экспрессия введенных генов
устойчиво сохраняется. Частота интеграции экзогенной ДНК мо-
жет быть повышена при использовании линейных плазмид и спе-
циальных, преимущественно, ретровирусных векторов экзогенной
ДНК (см. Главу IX). Случаи стабильной интеграции экзогенной
ДНК могут быть легко выявлены, если трансфецирующие плазмиды
или вектора содержат селектируемый маркерный ген. Чаще всего
в качестве маркера используют прокариотический ген neo, со-
общающий клеткам устойчивость к неомицину. Клетки, в которых
произошла интеграции такой плазмиды в хромосомную ДНК, будут
образовывать устойчивые клоны при выращивании на среде G418,
содержащей неомицин, в то время как все другие клоны клеток
будут в этих условиях деградировать.
Раздел 8.5. Методы направленного переноса генов.
Наиболее важным шагом на пути искусственного получения
мутантной линии животных является отбор клонов ЭСК с
сайт-специфической модификацией определенного гена. Однако,
случаи инсерции экзогенной ДНК в ген-мишень очень редки, их
общая частота, обычно, не превышает 10-6. Предпринимаются
попытки генетической модификации ЭСК с тем, чтобы повысить в
них частоту гомологичной рекомбинации. Идентифицированы не-
которые гены, контролирующие этот процесс у мышей и у чело-
века. Однако, в любом случае схемы направленной модификации
генов должны включать селекцию нужных клонов клеток. Впервые
направленная сайт-специфическая модификация была выполнена
также на гене гипоксантин-фосфорибозил-трансферазы (см.выше)
и была получена еще одна генетическая линия мышей, моделиру-
ющая вызванную дефектом в HPRT-гене болезнь Леш-Нихана у че-
ловека (Thomas, Capecci, 1987). Успех этих исследований, в
первую очередь, обусловлен существованием простых схем отбо-
ра клеток с функционирующим и нефункционирующим HPRT-геном
на селективных средах. Важно также, что этот ген локализован
в X-хромосоме и в ХУ-клетках он представлен одной копией.
При этих условиях случаи модификации гена, вызванные инсер-
цией экзогенной ДНК в правильном положении, легко идентифи-
цируются - Рис.8.1 (см. Главу X).
В настоящее время предложено несколько вариантов для
направленного переноса неселектируемых генов за счет допол-
нительной инсерции в трансфецирующую плазмиду селектируемого
маркерного гена в таком положении, при котором его экспрес-
сия происходит преимущественно при правильном встраивании
векторной последовательности в ген-мишень (рис.8.2). Так,
маркерный ген neo, помещенный в инсертируемую область ДНК
плазмиды без собственного промотора, может экспрессироваться
только находясь под контролем какого-либо другого промотора
хромосомной ДНК. Для этого инсерция экзогенной ДНК должна
произойти в область гена-мишени без сдвига рамки считывания.
При случайной интеграции экспрессии маркерного гена не будет
Таким образом, отбор неомицин-устойчивых клеток приведет к
резкому увеличению частоты клонов, в которых произошла гомо-
логичная рекомбинация между зкзогенной и геномной ДНК. На
этом же принципе основано использование генетических конс-
трукций с геном neo, не содержащим поли-А последовательности
в 3' области. Дальнейший поиск гомологичных рекомбинантов
среди G418-устойчивых клеток проводят путем блот-гибридиза-
ции, используя в качестве ДНК-зонда фрагмент векторной пос-
ледовательности, расположенный вне направленно переносимого
участка экзогенной ДНК.
Особенно перспективным на сегоднешний день представля-
ется метод позитивно-негативной селекции (Melton, 1994). Ме-
тод сочетает отбор клеток, в которых произошла интеграция
экзогенной ДНК, с селективной элиминацией тех из них, где
встраивание произошло за счет негомологичной рекомбинации.
Для этого маркерный селектируемый ген neo с регуляторными
последовательностями инсертируют в переносимую область ДНК
плазмиды, а вне этой области встраивают условно летальный
вирусный ген тимидинкиназы герпеса (HSV-tk). При интеграции
такого вектора в геномную ДНК путем гомологичной рекомбина-
ции HSV-tk ген не инкорпорируется в хромосому, тогда как при
негомологичной рекомбинации этот ген будет присутствовать в
неомицин-устойчивых клетках. Обработка таких клеток противо-
герписным агентом - ганцикловиром, будет сопровождаться ги-
белью всех клонов, экспрессирующих вирусную тимидинкиназу
(Рис.8.3).
Отбор клеток с модифицированным геном также может про-
изводиться с помощью ПЦР. При этом не используют какие-либо
маркерные гены и/или селектируемые среды. Олигопраймеры для
амплификации выбирают таким образом, что один из них гомоло-
гичен соседней с сайтом интеграции последовательности моди-
фицируемого гена, а другой соответствует участку инсертируе-
мой экзогенной ДНК (Рис.8.4). Метод позволяет обнаруживать
присутствие пяти правильно модифицированных клеток среди
50 000. После трансфекции клетки разделяются на группы, в
каждой из которых проводят тестирование с помощью ПЦР. При
положительном ответе группу клеток разбивают на подгруппы и
процедуру повторяют до тех пор, пока не удается изолировать
нужные клоны.
Направленное выключение генов-мишеней может быть достиг-
нуто несколькими способами. Так называемые, нулевые мутации
могут быть получены путем встраивания плазмиды, содержащей,
наряду с экзонными последовательностями модифицируемого гена
и селектируемым маркерным геном, сильные транскрипционные и
трансляционные стоп-сигналы. При этом в разрушенном за счет
инсерции экзоне транскрипция прекращается, в результате чего
образуется укороченный белок, незащищенный от действия кле-
точных протеаз.
Более совершенной является разработанная недавно техни-
ка двойной замены гена. Для этого используют ЭСК, дефицитные
по ферменту HPRT - НМ1 (Melton, 1994). На первом этапе
ген-мишень инактивируют путем замены одного из экзонов и
прилежащих последовательностей на HPRT мини-ген. При этом в
нокаутирующем векторе HPRT маркер фланкируется ДНК последо-
вательностями, гомологичными месту вставки в ДНК гена-мише-
ни. В этот же вектор включен и ген вирусной тимидинкиназы
(Рис.8.5). После трансфекции отбираются клетки позитивные по
HPRT и негативные по вирусной тимидин-киназе. Именно в таких
клетках с высокой степенью вероятности произошла гомологич-
ная рекомбинация с заменой одного из экзонов на инсертиро-
ванный мини-ген HPRT. Факт такого встраивания доказывается
при помощи ПЦР. На следующем этапе инсертированный HPRT ми-
ни-ген заменяют на отсутствующий фрагмент гена-мишени, в ко-
торый предварительно вносят интересующие исследователя мута-
ции. При этом альтернативный вектор несет те же фланкирующие
ДНК-последоваельности гена-мишени, что и первый (нокаутирую-
щий) вектор. Клетки HPRT минус на этом, 2- м этапе с большой
вероятностью будут нести гомологичную рекомбинацию встроен-
ной конструкции мини-HPRT гена и альтернативного фрагмента
исходного гена. Факт такой рекомбинации контролируется с по-
мощью ПЦР. Таким образом, вместо обычного выключения функции
гена, что достигается уже на 1-м этапе, данная технология
позволяет вносить в структуру гена дикого типа различные,
заранее спланированные изменения, в том числе и специфичес-
кие мутации, аналогичные таковым при наследственных болезнях
у человека. Следовательно, данный подход позволяет проводить
более тонкое генетическое моделирование и исследовать осо-
бенности функции мутантного гена in vivo.
Для введения специфических мутаций в определенные экзо-
ны гена используют, так называемые "hit & run" векторы (Has-
ty et al., 1991). Перспективным также представляется исполь-
зование дрожжевых YAC-векторов, несущих полноразмерные
кДНК-овые последовательности гена. Так как уровень гомоло-
гичной рекомбинации у дрожжей достаточно высок, в такие
конструкции легко вводить специфические мутации и затем ис-
пользовать их для трансфекции ЭСК и получения трансгенных
животных 4.
Отбор клонов эмбриональных стволовых клеток, в которых
произошла направленная модификация гена-мишени, в значитель-
ной степени, предопределяет успех всего комплекса работ по
созданию модельной генетической линии. Однако, и дальнейшие
этапы этой программы, включающие получение химерных транс-
генных животных, идентификацию зародышевых трансмиттеров
(химер, продуцирующих трансфецированные половые клетки) и
селекцию гетерозиготных, а затем гомозиготных мутантнах осо-
бей, требуют большой квалификации, труда и времени. Осложня-
ющим обстоятельством является то, что химерные животные не-
редко имеют сниженную жизнеспособность и плодовитость. То же
может быть справедливо и в отношении гетерозиготных мутант-
ных особей. В гомозиготном состоянии инсертированные мутации
могут не только снижать жизнеспособность и плодовитость, но
и обладать летальным или полулетальным эффектом уже в прена-
тальном периоде. В таком случае линия поддерживается путем
отбора и скрещивания гетерозигот.
Несмотря на огромные методические сложности и высокую
стоимость, направленное получение моделей наследственных бо-
лезней оправдывает затраченные усилия. Мутантные животные
представляют уникальную возможность исследовать патофизиоло-
гические процессы, развивающиеся в организме вследствие на-
рушений работы определенного гена, анализировать влияние
специфических мутаций на фенотип, тестировать новые лекарс-
твенные препараты и испытывать различные терапевтические
подходы. Велика также роль генетических линий в разработке
методов генной терапии (см. Главу IX).
ГЛАВА IY.
ТИПЫ И НОМЕНКЛАТУРА МУТАЦИЙ. МЕТОДЫ ДНК- ДИАГНОСТИКИ.
Раздел 4.1 Мутантные аллели, характеристика и типы му-
таций.
Каждый генетический локус характеризуется определенным
уровнем изменчивости, то есть присутствием различных аллелей
или вариантов последовательностей ДНК у разных индивидуумов.
Применительно к гену, аллели разделяются на две группы -
нормальные, или аллели дикого типа, при которых функция гена
не нарушена, и мутантные, приводящие к нарушению работы ге-
на. В любых популяциях и для любых генов аллели дикого типа
являются преобладающими. Под мутацией понимают все изменения
в последовательности ДНК, независимо от их локализации и
влияния на жизнеспособность особи. Таким образом, понятие
мутации является более широким по сравнению с понятием му-
тантного аллеля. Уместно, однако, заметить, что в научной
литературе сравнительно часто встречающиеся в популяциях ва-
рианты последовательностей генов, не приводящие к заметным
нарушениям функций, обычно рассматриваются как нейтральные
мутации или полиморфизмы, тогда как понятия "мутация" и "му-
тантный аллель" зачастую употребляются как синонимы.
Как упоминалось ранее, различные изменения в нуклеотид-
ной последовательности транскрибируемых областей ДНК могут
по-разному проявляться в фенотипе. Часть из них не оказывает
никакого влияния на структуру и функцию соответствующего
белка. Примером могут служить замены нуклеотидов, не приво-
дящие к замене аминокислот в силу вырожденности генетическо-
го кода. Мутантные аллели, в свою очередь, могут быть под-
разделены на три класса: (1) мутации, ведущие к полной поте-
ре функции (loss-of-function), (2) мутации, сопровождающиеся
количественными изменениями соответствующих мРНК и первичных
белковых продуктов и (3) доминантно-негативные мутации, из-
меняющие свойства белковых субъединиц таким образом, что они
оказывают повреждающий эффект на жизнеспособность или функ-
ционирование экспрессирующих типов клеток (gain-of-function
мутации). Наибольшим повреждающим действием обладают мута-
ции, приводящие либо к образованию бессмысленного белка, ли-
бо к преждевременному окончанию его синтеза, то есть делеции
или инсерции, не кратные трем нуклеотидам и потому вызываю-
щие сдвиг рамки считывания, а также нонсенс мутации - замены
нуклеотидов, при которых образуются терминирующие стоп-кодо-
ны. Проявление таких мутаций зависит от их внутригенной ло-
кализации. Чем ближе мутации к 5' концу гена, то есть к на-
чалу транскрипции, тем короче их белковые продукты. Такие
абортивные (truncated) белки неспособны к модификациям и
быстро деградируют.
Фенотипическое проявление замен нуклеотидов в кодо-
нах, так нназываемых миссенс мутаций, зависит от природы
соответствующих аминокислотных замен в белке и от функцио-
нальной значимости того домена, в котором это произошло.
Так, замены аминокислот в активных центрах белков могут соп-
ровождаться полной потерей его функциональной активности,
тогда как даже значительно более серьезные нарушения в дру-
гих частях белка часто оказывают существенно меньшее влияние
на фенотип. Мутации на стыке экзонов и интронов (так называ-
емые сплайсинговые мутации) часто нарушают процессинг пер-
вичного РНК-транскрипта, в результате чего происходит либо
неправильное вырезание соответствующей интронной области и
трансляция бессмысленного удлиненного белка, не защищенного
от протеолитического действия внутриклеточных ферментов, ли-
бо вырезание экзонов и образование делетированного белка. В
обоих случаях сплайсинговые мутации, как правило , обуслав-
ливают тяжелое течение болезни. Нарушения в регуляторных об-
ластях генов сопровождаются количественными изменениями
соответствующего продукта и не затрагивают структуры и функ-
циональной активности белка. Проявление таких мутаций опре-
деляется, в конечном счете, пороговым уровнем концентрации
белка, при котором его функция еще сохраняется. Как правило,
регуляторные мутации менее серьезны и обладают более выра-
женным плейотропным (множественым) эффектом по сравнению с
мутациями структурных генов.
Относительно недавно выявлен новый класс так называемых
динамических мутаций, или мутаций экспансии, связанных с
нестабильностью числа тринуклеотидных повторов в функцио-
нально значимых частях генов. Многие тринуклеотидные повто-
ры, локализованные в транскрибируемых или регуляторных об-
ластях генов, характеризуются высоким уровнем популяционной
изменчивости, в пределах которого не наблюдается фенотипи-
ческих нарушений (Willems,1994). Болезнь развивается лишь
тогда, когда число повторов в этих сайтах превосходит опре-
деленный критический уровень. Наследование таких мутаций,
как правило, отличается от классического Менделевского ти-
па. Для них характерны: различная пенетрантность в сочетании
с неполным доминированием; геномный импринтинг (различия фе-
нотипических проявлений в зависимости от того, получена му-
тация от матери или от отца) и феномен антиципации - на-
растание тяжести проявления заболевания в последующих поко-
лениях (Willems,1994).
Классическим примером мутаций экспансии является синд-
ром ломкой Х-хромосомы (FraXA), обусловленный присутствием
удлиненных CCG повторов в 5'-нетранслируемой регуляторной
области FMR1-гена (Xq27.3). Аналогичные нестабильные повторы
обнаружены еще в трех ломких сайтах, причем два из них
(FraXE и FraXF) расположены на очень небольшом расстоянии
дистальнее FraXA. Во всех четырех случаях CCG-повторы лока-
лизованы вблизи от CpG островков, при этом увеличение числа
копий триплетов выше определенного порогового уровня сопро-
вождается гиперметилированием всей регуляторной GC-богатой
области, вследствие чего и происходит резкое снижение и
полное выключение транскрипционной активности - мутации по
типу " утраты функции" (loss-of-functions). Таким образом,
область CCG-повторов в этих локусах можно рассматривать, как
своеобразный cis-действующий элемент транскрипции (Willems,
1994, Mandel,1994).
Другой тип динамических мутаций описан для 6-ти раз-
личных тяжелых аутосомно-доминантных нейродегенеративных
расстройств (см. Главу X). Для всех этих заболеваний обнару-
жено присутствие удлиненных CAG-повторов в открытой рамке
считывания (ORF). Эти повторы транслируются в протяженные
полиглютаминовые треки, предположительно локализованные в
ДНК- связывающих доменах соответствующих белковых продуктов.
В результате белковые молекулы приобретают новые свойства,
нарушающие нормальные метаболические связи. Таким образом,
нестабильные CAG-повторы можно рассматривать, как
gain-of-function - мутации. Интенсивно обсуждается также
возможность участия амплификации CAG-повторов в формировании
предрасположенности к таким частым расстройствам центральной
нервной системы, как шизофрения и маниакально-депрессивный
психоз. Примером третьей группы болезней экспансии служит
миотоническая дистрофия. При этом заболевании огромные CTG
(или CAG) повторы локализованы в 3'-нетранслируемой области
гена. Они также рассматриваются, как факторы, нарушающие
нуклеосомную организацию гена и подавляющие его транскрипцию
Более подробно болезни экспансии рассмотрены в Главе X.
Раздел 4.2. Генетическая гетерогенность наследственных
заболеваний.
Одним из важных обобщающих итогов молекулярно-генети-
ческих исследований моногенных болезней явилось доказа-
тельство их генетической гетерогенности. Последняя может
быть вызвана разными причинами. Прежде всего, оказалось, что
один и тот же биохимический эффект (фенотип) может быть
обусловлен мутациями в разных генах. С другой стороны, мута-
ции одного и того же гена, как установлено, могут приводить
к совершенно разным клиническим проявлениям. Например, мута-
ции гена адренорецептора, сцепленого с Х-хромосомой, могут
быть причиной нейродегенеративного заболевания - болезни
Кеннеди, если они захватывают область тринуклеотидных повто-
ров (Глава X), и в то же время приводить к синдрому тестику-
лярной феминизации, то есть нарушениям половой дифференци-
ровки, если они затрагивают другие последовательности этого
же гена. Крайним выражением такой гетерогенности может слу-
жить пример с геном рецептора тирозинкиназы -RET, различные
мутации которого могут приводить к 4-м совершенно различным
наследственным синдромам, таким как семейная медуллярная
карцинома щитовидной железы, болезнь Гиршпрунга, множествен-
ная эндокринная неоплазия тип 2А (МЭН-2А) и тип 2B (МЭН-2B)
(Hayningen,1994). Подобные фенотипические разнообразия про-
явлений мутаций одного и того же гена получили название ал-
лельных серий. Термин используется уже около 20 лет для
описания групп из нескольких моногенных наследственных забо-
леваний, клинические проявления которых позволяют предпола-
гать их связь с разными генами, в то время как биохимические
и/или генетические исследования доказывают их аллельную при-
роду, то есть в основе их патогенеза лежат разные мутации
одного и того же гена.
В настоящее время известно более 100 таких болезней
(Romeo, McKusick, 1994). Для каждого заболевания из подобной
серии аллелизм мутаций уже доказан на молекулярном уровне.
Причины подобного фенотипического разнообразия могут быть
различными: (1) локализация мутантных аллелей в функциональ-
но разных доменах белка; (2) принципиально разный механизм
действия мутаций (loss-of-function, gain-of-function); (3)
присутствие в том же гене модифицирующего мутантного аллеля
или полиморфизма и (4) влияние генетического окружения на
проявление мутантного аллеля, то есть его взаимодействие с
определенными аллелями гена-модификатора или даже нескольки-
ми такими генами. Углубленный молекулярно-генетический ана-
лиз практически каждого наследственного заболевания указыва-
ет на его значительную генетическую гетерогенность, связан-
ную с различными мутациями гена. Некоторые примеры аллельных
серий и генетической гетерогенности заболеваний будут
рассмотрены более подробно в Главе X.
Раздел 4.3 Номенклатура мутаций.
Для практических целей и, главным образом, для чтения
научной литературы, важно знать, как записываются мутации.
До недавнего времени единой номенклатуры записи мутаций не
существовало. В 1992 г. двумя американскими учеными Артуром
Боде и Лап-Чи Тсуи была предложена универсальная стандартная
система для обозначения разных мутаций (Beudet, Lap-Сhee
Tsui, 1993). Она рассчитана как на запись аминокислотных за-
мен в белках, так и на нуклеотидные замены и перестановки в
ДНК. В первом случае, каждой аминокислоте соответствует од-
нобуквенный символ (Табл.4.1), слева записывается нормальный
вариант аминокислоты, справа - мутантный, а расположенный в
центре номер соответствует месту замены в цепочке первичного
продукта трансляции. Например, запись D44G означает замену
аспарагина на глицин в 44-м положении полипептидной цепи, а
A655E - аланина на глутамин в пложении 655 белкового продук-
та. Так записываются различные варианты аминокислотных замен
при миссенс мутациях. Буквой Х обозначается место остановки
синтеза полипептидной цепи при нонсенс мутациях. Например,
Q39X означает замену глицина на стоп сигнал в 39-м кодоне, а
W1282X - триптофан-триплета на стоп-кодон в положении 1282.
Отсутвие одной или нескольких аминокислот обозначают значком
^-дельта. Так, наиболее частая мутация, приводящая к муко-
висцидозу- ^F508 - означает отсутствие фенилаланина в 508
положении трансмембранного регуляторного белка муковисцидо-
за. Полиморфизмы, связанные с равноценной по функциональной
значимости заменой аминокислот, записывают через черточку.
Например, M/V470 - метионин или валин в положении 470.
Таблица 4.1. Символы аминокмслот.
------------------------T-----------------T--------------¬
¦ Аминокислоты 1¦ 0 Трехбуквенный 1¦ 0 Однобуквенный 1¦
¦ 1¦ 0 символ 1¦ 0 символ 1 ¦
+-----------------------+-----------------+--------------+
¦ Аланин 1¦ 0 Ala 1¦ 0 A 1 ¦
¦ Аргинин 1¦ 0 Arg 1¦ 0 R 1 ¦
¦ Аспарагин 1¦ 0 Asn 1¦ 0 N 1 ¦
¦ Аспарагиновая кислота 1¦ 0 Asp 1¦ 0 D 1 ¦
¦ Asn и/или Asp 1¦ 0 Asx 1¦ 0 B 1 ¦
¦ Цистеин 1¦ 0 Cys 1¦ 0 C 1 ¦
¦ Глутамин 1¦ 0 Gln 1¦ 0 Q 1 ¦
¦ Глутаминовая кислота 1¦ 0 Glu 1¦ 0 E 1 ¦
¦ Gln и/или Glu 1¦ 0 Glx 1¦ 0 Z 1 ¦
¦ Глицин 1¦ 0 Gly 1¦ 0 G 1 ¦
¦ Гистидин 1¦ 0 His 1¦ 0 H 1 ¦
¦ Изолейцин 1¦ 0 Ile 1¦ 0 I 1 ¦
¦ Лейцин 1¦ 0 Leu 1¦ 0 L 1 ¦
¦ Лизин 1¦ 0 Lys 1¦ 0 K 1 ¦
¦ Метионин 1¦ 0 Met 1¦ 0 M 1 ¦
¦ Фенилаланин 1¦ 0 Phe 1¦ 0 F 1 ¦
¦ Пролин 1¦ 0 Pro 1¦ 0 P 1 ¦
¦ Серин 1¦ 0 Ser 1¦ 0 S 1 ¦
¦ Треонин 1¦ 0 Thr 1¦ 0 T 1 ¦
¦ Триптофан 1¦ 0 Trp 1¦ 0 W 1 ¦
¦ Тирозин 1¦ 0 Tyr 1¦ 0 Y 1 ¦
¦ Валин 1¦ 0 Val 1¦ 0 V 1 ¦
L-----------------------+-----------------+---------------
Принципиальная схема записи и нумерации нуклеотидов
приведена на Рис.4.1. Отсчет нуклеотидов в молекуле ДНК на-
чинается с первого смыслового кодона, так что нуклеотид под
номером +1 соответствует первому нуклеотиду в молекуле кДНК.
Вверх по течению (или справа налево от 3' к 5'-концу) от
первого кодона нуклеотиды записывают со знаком "-", вниз по
течению (от 5 'к 3') - со знаком "+". Для многих генов
отсутствие точных данных о положении инициирующего сайта и
наличие нескольких мест инициации транскрипции существенно
затрудняют нумерацию нуклеотидов. Нуклеотиды экзонов обозна-
чают заглавными буквами, интронов - прописными.
В Табл.4.2. даны примеры обозначения различных мутаций
с использованием как аминокислотной, так и нуклеотидной ну-
мерации. Нуклеотидная система записи особенно важна для
обозначения делеций, инсерций, сплайсинговых мутаций и поли-
морфизмов, не связанных с заменами аминокислот или происхо-
дящими в нетранслируемых частях гена. В случае делеции или
инсерции одного или двух нуклеотидов приводится их буквенное
обозначение. Например, 441delA, 485insTA. При делеции или
инсерции трех и более нуклеотидов указывается только их
число. Так, 852del22 означает делецию 22 нуклеотидов, начи-
ная с 852-го нуклеотида, а 3320ins7 обозначает вставку 7 пар
оснований после нуклеотида 3320. В случае больших вставок
или делеций их размеры указыаются в килобазах, например
2115ins13kb, или обозначаются соответствующие инсертирован-
ные/ делетированные структурные элементы генома. Так,
2115insAlu означает инсерцию Alu-повтора после нуклеотида
... активных факторов в биосфере. Поэтому генетико-гигиеническое нормирование содержания подобных факторов в окружающей среде является обязательным компонентом профилактики заболеваемости человека. Генетика человека на этапе ее становления обозначалась в нашей стране в духе времени – евгеникой. Обсуждение возможностей евгеники, совпавшее по времени со стартом и быстрым развитием генетических ...
нетика, микробиология, вирусология. Генетика человека — раздел генетики, изучающий закономерности наследования и изменчивости признаков у человека. Глава 2. Русские учёные в развитии генетики генетика наследственность ученый лобашев филипченко Филипченко Юрий Александрович У истоков отечественной генетики стояли выдающиеся ученые, которые пришли в новую науку из традиционных биологических ...
... в практику, должны быть разработаны методы для установления степени риска либо в отдельных семьях, либо путем скринирования всех родителей. Это изменит назначение медицинской генетики от генетики, консультирующей ретроспективно, к службе генетического предупреждения на перспективной основе. Может возникнуть новое отношение к ответственности родителей к воспроизводству потомства, которое вместе с ...
... гнезда", "Войны и мира", "Вишневого сада". Важно и то, что главный герой романа как бы открывает целую галерею "лишних людей" в русской литературе: Печорин, Рудин, Обломов. Анализируя роман "Евгений Онегин", Белинский указал, что в начале XIX века образованное дворянство было тем сословием, "в котором почти исключительно выразился прогресс русского общества", и что в "Онегине" Пушкин "решился ...
0 комментариев