STS, подавляющее большинство которых представляет собой

Литература - Другое (книга по генетике)
СМ соответствует 1% рекомбинации. Общая длина генома че- Высокополиморфных индексных маркеров со средним расстоя- Кб до более, чем 9 миллионов п.о. Эффективность разделе- Из 141 (Antonarakis, 1994). Число подобных примеров не- Представлены данные о наследовании и встречаемости ли- Случаях - абсолютно однозначно. 23 лизосомных гена клони- Отдельные аспекты, касающиеся идентификации соот- Муковисцидоз Миодистрофия Дюшенна Гемофилия А Гемофилия B Болезнь Виллебранда Фенилкетонурия И 385, сцепленные в Кавказских популяциях с определенны- Болезнь Вильсона-Коновалова Спинальная мышечная атрофия Таких ДНК маркеров: GS4, MCT-112, GS2 -дистальные и мик- Половые хромосомы и одна митохондриальная . В каждой клет- Выделение ДНК, ее синтез и рестрикция Блот-гибридизация по Саузерну, гибридизация in situ ДНК-зонды, клонирование, векторные системы Геномные и к-ДНК-овые библиотеки генов, их скрининг Секвенирование последовательностей ДНК Полимеразная цепная реакция П.о., в составе которых обнаруживаются альфоидные после- STS, подавляющее большинство которых представляет собой П.о., в составе которых обнаруживаются альфоидные после- STS, подавляющее большинство которых представляет собой При обозначении сплайсинговых мутаций записывают номер Гена, мутации которых приводят к различным наследствен- Основные векторные системы Липосомный метод трансфекции Перспективы создания "идеальных" векторных систем
584410
знаков
0
таблиц
0
изображений

000 STS, подавляющее большинство которых представляет собой

тандемные повторы 2 - 4 нуклеотидов. Благодаря выраженной

индивидуальной специфичности и достаточно стабильному менде-

левскому типу наследования STS-сайты нашли широкое примене-

ние и в молекулярной диагностике генных болезней, прежде

всего в качестве молекулярных маркеров для идентификации му-

тантных хромосом в семьях высокого риска (см. Главу VII).

Наличие большого числа гипервариабильных микро- и минисател-

литных последовательностей ДНК является характерной особен-

ностью генома человека. Аналогичные последовательности, об-

наруженные в геноме приматов, значительно более однородны,

что доказывает возможность существенного увеличения вариа-

бильности этих участков ДНК за сравнительно короткий эволю-

ционный промежуток (Юров,1988; Gray et al., 1991).

Сведения о мутабильности высокополиморфных последова-

тельностей в геноме человека весьма противоречивы. Показано,

однако, что в наиболее вариабильных минисателлитных локусах

частота мутаций может достигать 5% на гамету (Jeffreys et

al., 1988). Предполагается, что одной из главных функций ги-

первариабильных микро- и минисателлитных последовательностей

ДНК может быть контроль гомологичной рекомбинации в мейозе.

На культурах клеток показано стимулирующее влияние миниса-

теллитных последовательностей ДНК на гомологичную рекомбина-

цию. Так, инсерция синтезированной последовательности,

составленной на основе гипервариабильных минисателлитов в

геномную ДНК приводит к более, чем 10-кратному увеличению

числа реципрокных обменов, причем степень этого влияния об-

ратно пропорциональна расстоянию между STR и сайтом рекомби-

нации (Wahls et al., 1990). Вместе с тем, многие авторы об-

ращают внимание на достаточно высокую стабильность миниса-

теллитных аллелей, что позволяет их широко использовать как

для генетического маркирования, так и для популяционных

исследований и идентификации личности методом ДНК-фингерп-

ринта (Decorte,Cassiman 1993; Edwards et al.,1991; Ива-

нов,1989).

Для многих мутаций, локализованных в некодирующих

частях генома, характерны высокие уровни популяционного по-

лиморфизма. Необходимо, однако, подчеркнуть, что эта измен-

чивость не затрагивает общей структуры генома, определяющей

различия между видами. Более того, сопосталение первичных

нуклеотидных последовательностей сравнительно протяженных

секвенированных участков ДНК (области Т-рецепторных генов

длиной около 100 кб) обнаружило сохранение высокой степени

гомологии не только в кодирующих, но и, что особенно удиви-

тельно, в некодирующих частях этих последовательностей. Если

учесть, что эволюционно человек и мышь разделены почти 80

миллионами лет эволюции, эти данные рассматриваются как сви-

детельство функциональной значимости некодирующих частей

этих генов По-видимому, далеко не всякие мутации в некодиру-

ющих районах ДНК являются нейтральными и в определенных слу-

чаях они могут отрицательно влиять на жизнеспособность. К

сожалению, в настоящее время ничего или почти ничего неиз-

вестно о функциях некодирующих ДНК-последовательностей.

Высказывалось даже предположение, что их единственной функ-

цией является репликация. Отсюда возникло представление об

"эгоистической" или "паразитической" ДНК. Конечно, полностью

исключить наличие подобных паразитических последователь-

ностей ДНК в любом геноме нельзя. Тем ни менее, представля-

ется маловероятным, что значительная часть генома человека,

также как и других видов, относится к эгоистической ДНК.

По-видимому, наши знания о роли некодирующей или, как еще

говорят, "избыточной" ДНК все еще явно недостаточны. Ста-

бильность структурной организации генома в пределах вида

свидетельствует скорее о важной эволюционной роли некодирую-

щих ДНК-последовательностей и об их участии в процессах он-

тогенеза. Можно предполагать, что ответ на этот интригующий

вопрос в какой-то мере будет получен при расшифровке и срав-

нении полной первичной нуклеотидной последовательности гено-

мов у животных разных видов и, прежде всего, у человека и

мыши, где прогресс в секвенировании геномной ДНК особенно

значителен (см.Главу III). Уместно заметить, что проведенный

недавно компьютерный анализ генома человека позволяет пред-

полагать наличие в его некодирующей части особого, пока еще

непонятного генетического кода, смысл и значение которого

остаются загадочными ( ?).


Раздел 2.7 Мобильность генома, облигатные и факульта-

тивные элементы генома.


До сих пор мы рассматривали основные структурные эле-

менты генома человека, положение которых в соответствии с

представлениями классической генетики достаточно постоянно.

Начиная с 50-х годов стали накапливаться данные о существо-

вании большого числа мобильных генетических элементов,

присутствие которых в геноме не является обязательным, а их

топография и количество может варьировать в различных клет-

ках, тканях и у разных индивидуумов (McClintock, 1984; Berg,

Howe, 1989). У прокариот такие элементы получили название

транспозонов. Их структура и функции достаточно хорошо изу-

чены. Отличительной особенностью мобильных элементов явля-

ется способность существовать как в интегрированном с хро-

мосомой виде, так и в виде отдельных макромолекул - эписом,

плазмид, вирусных частиц. Почти 50 различных семейств мо-

бильных элементов описано у дрозофилы . Вместе эти последо-

вательности составляют около 12% гаплоидного набора

(Golubovsky, 1995). В геноме млекопитающих содержится до 50

000 диспергированных копий ретропозона LINE размером около

6500 пар основанийю. Семейство Alu- повторов, содержащее от

300 до 500 тысяч копий, также относится к числу мобильных

элементов генома (Сharlesworth et al.,1994). Явление лизоге-

нии, то есть присутствие вирусных последовательностей в

составе ДНК человека и наличие фрагментов генов человека в

вирусных геномах, служит одним из примеров мобильности ДНК и

возможности "горизонтальной" передачи наследственно закреп-

ленных признаков между видами. Мобильные ДНК, как правило,

относятся к факультативным элементам. Как уже отмечалось, не

существует четких границ между облигатными и факультативными

элементами генома, так как возможен взаимный переход от од-

ного состояния к другому. Структурные локусы или сегменты

хромосом могут трансформироваться в факультативные элементы

за счет амплификации, интеграции в мобильные элементы или

путем образования цитоплазматических ретротранскриптов. Об-

ратный переход от факультативных элементов к облигатным осу-

ществляется посредством инсерций, транспозон-индуцированных

перестроек и обратной транскрипции.

Факультативные элементы существуют в геноме как популя-

ции информативных макромолекул. Изменения, возникающие в них

под воздействием внешних факторов, носят совершенно иной ха-

рактер по сравнению с классическими мутациями в структурных

локусах. Для описания изменений в факультативных элементах

предложен термин " вариации" (Голубовский, 1985). Этот тер-

мин впервые использован Жакобом и Воллманом для описания по-

ведения эписом (Jacob, Wollman, 1961). Вариации могут приво-

дить к изменениям на генотипическом уровне, то есть к мута-

циям, вследствие простого перемещения факультативных элемен-

тов или сдвига в соотношении между факультативными и обли-

гатными элементами. В этих случаях мутации встречаются од-

новременно у многих индивидуумов. Подобные изменения упоря-

дочены, могут происходить сразу во многих локусах и отлича-

ются высокой сайт-специфичностью. Локализация структурных

перестроек, возникающих в результате вариаций, предопределе-

на первоначальной топографией факультативных элементов на

хромосомах. И наконец, сами вариации могут быть индуцированы

обычными "не-мутагенными" факторами, такими как температура

или межлинейные кроссы (Golubovsky, 1995). Факультативные

элементы могут рассматриваться как оперативная память гено-

ма, так как во многих случаях спонтанное возникновение мута-

ций в облигатных элементах опосредовано их активацией. Счи-

тается, в частности, что инсерционный мутагенез является

причиной спонтанного возникновения 70% видимых мутаций в

природных популяциях дрозофилы. Однако, у человека пока за-

регистрированы лишь единичные случаи возникновения мутаций

вследствие перемещения мобильных элементов генома (Vidaud et

al.,1993).


Раздел 2.8 Изохоры, метилирование, гиперчувствительные

сайты.


Перечисленные выше компоненты генома не случайным обра-

зом связаны с последовательностями нуклеотидов. И в этом

смысле можно говорить о существовании в геноме человека

структур более высокого иерархического порядка. Примером

служат изохоры - длинные, в среднем, свыше 300 кб сегменты

ДНК, гомогенные по композиции оснований или по GC-уровням.

62% генома состоит из GC-бедных изохор и в них локализовано

около 34% генов, 31% генома представлен GC-богатыми изохора-

ми, содержащими 38% генов, и в 3% изохор, обогащенных

GC-последовательностями (так называемых H3 изохор), нахо-

дится 28% генов (Mouchiroud et al., 1991; Saссone et al.,

1993). Таким образом, существуют относительно небольшие

участки ДНК, в которых плотность генов в 10 -20 раз выше,

чем в остальных последовательностях.

Другой общей чертой генома человека является то, что in

vivo значительная доля цитозиновых остатков в молекуле ДНК

метилирована, то-есть находится в форме 5-метилдезоксицити-

дина. Экспериментальное изучение характера метилирования

основано на сопоставлении рестрикционных фрагметов, образую-

щихся после обработки ДНК эндонуклеазами, для которых сайты

узнавания одинаковы и содержат в своем составе цитозин, но

действуют эти ферменты по-разному, в зависимости от того,

находится ли это основание в метилированном состоянии или

нет. В частности, рестриктазы - Msp1 и Hpa11, узнают после-

довательность CCGG, но в отличие от Msp1, Hpa11 не расщепля-

ет ДНК в тех сайтах, где внутренний CpG динуклеотид метили-

рован. Некоторые сегменты генома, особенно это относится к

повторяющимся последовательностям, полностью метилированы в

местах 5'-CCGG-3' и частично метилированы в 5'-GCGC-3' -

сайтах рестрикции для Hha1. В других сегментах наблюдается

характерный рисунок частичного метилирования в 5'-CCGG-3'

последовательностях (Behn-Krappa et al., 1991). Различные

индивидуумы, независимо от их этнического происхождения,

практически не различаются по характеру метилирования ДНК в

одних и тех же типах тканей, тогда как в процессе онтогене-

тической дифференцировки происходят значительные изменения

рисунков метилирования. В перевиваемых культурах клеток опу-

холевого происхождения число метилированных сайтов резко

уменьшено.

Высказано предположение о наличии прямой связи между

метилированием ДНК и состоянием генетической активности в

клетках. Существует класс белков, которые специфическим об-

разом связываются с метилированными участками ДНК, делая их

недоступными для действия ряда ферментов, в том числе, воз-

можно, и для полимераз. Получено много прямых эксперимен-

тальных доказательств роли метилирования ДНК в инактивации

эукариотических промоторов, а, значит, и в регуляции актив-

ности генов. Напротив, гипометилирование промоторной области

генов, в особенности CpG островков, как правило, свиде-

тельствует о функциональной активности генов. Показано, что

необычные структуры в молекуле ДНК, также как экзогенная

ДНК, инкорпорированная в процессе генетической трансформа-

ции, нередко подвергаются метилированию. Известно, что мети-

лирование играет важную роль в инактивации X хромосомы у са-

мок, в регуляции экспрессии генов в процессе развития, а

также непосредственно вовлечено в феномен хромосомного (ге-

номного) импринтинга, связанного с различиями пенетрантности

некоторых аллелей в зависимости от их происхождения, то есть

прохождения через материнский или отцовский гаметогенез (Ба-

ранов, 1991).

В GC-богатых изохорах локализовано большое количество

CpG островков - последовательностей от 500 до 2000 п.о., ха-

рактеризующихся очень высоким содержанием гуанина и цитозина

(G+C > 60%), представленных в виде кластеров неметилирован-

ных CpG дуплетов и, так называемых, G/C боксов - локусов,

родственных сайту узнавания для одного из транскрипционных

факторов Sp1 - (G)4C(G)4C (Lindsay, Bird, 1987; Bird, 1986;

Aissani, Bernardi, 1991). CpG острова содержат много сайтов

узнавания для чувствительной к метилированию эндонуклеазы

HpaII, а также сайты для редкощепящих рестриктаз, узнающих

неметилированные CpG дуплеты. В частности, более 80%

Nor1-сайтов связано с CpG-богатыми островками. Как правило,

CpG островки локализованы в 5'- фланкирующих последователь-

ностях, 5'-зкзонах и 5'-интронах всех изученных хаузки-

пинг-генов и 40% тканеспецифических генов. CpG островки яв-

ляются характерной особенностью транскрибируемых участков

генома. Их идентификация в клонированных последовательностях

геномных библиотек существенно облегчает поиск конкретных

структурных генов (см.раздел 2.4) . Наибольшая плотность CpG

островков наблюдается в теломерных участках хромосом 1, 9,

15, 16, 17, 19, 20, 22 (Antonarakis,1994). Точные молекуляр-

ные методы регистрации СрG островков показали, что их число

в геноме человека приближается к 45000 (

Antequera,Bird,1993).

Можно также отметить существование в геноме человека

сайтов, гиперчувствительных к действию ДНК-азы 1 и структур-

но отличающихся от основной массы хроматина. Присутствие та-

ких сайтов показано для многих генов млекопитающих и, по-ви-

димому, это необходимое, но не достаточное условие их

экспрессии. Локализация гиперчувствительных сайтов может ме-

няться в процессе развития и под действием гормонов. В неко-

торых случаях эти участки маркируют положение транскрипцион-

ных регуляторных элементов генома, действующих как в положи-

тельном, так и в отрицательном направлениях. В других случа-

ях это области функционально активных генов, находящихся в

деспирализованном состоянии и имеющих однонитевую структуру.

Именно такие однонитевые участки ДНК особенно выско чувстви-

тельны к ДНК-азе 1. На этом их свойстве основан метод

ник-трансляции in situ, позволяющий непосредственно на хро-

мосомных препаратах визуализировать функционально активные

районы хромосом. С этой целью хромосомные препараты обраба-

тывают ДНК-азой 1, после чего непосредственно на них с по-

мощью ДНК-полимеразы проводят синтез ДНК в присутствии мече-

ных нуклеотидов. При этом метка включается преимущественно

только в те участки хромосом,где находятся функционально ак-

тивные гены (Verma, Babu, 1989).


ГЛАВА II.


ГЕНОМ ЧЕЛОВЕКА, СТРУКТУРА ГЕНОВ.


Раздел 2.1. Определение генома и его основных элемен-

тов.


Термин геном используется для обозначения полной гене-

тической системы клетки, определяющей характер онтогенети-

ческого развития организма и наследственную передачу в ряду

поколений всех его структурных и функциональных признаков.

Понятие генома может быть применено к таксономической груп-

пе, виду, отдельной особи, клетке, микроорганизму или ви-

русу. Так, можно говорить о структуре генома эукариот и про-

кариот, сравнивать геномы разных видов, изучать особенности

строения генома у конкретных индивидуумов или следить за из-

менениями, происходящими в геноме специфических клеток в

процессе их онтогенетической дифференцировки. Часто геном

определяется как генетическая информация, заключенная в мо-

лекулах ДНК одной клетки. Однако, такие факты, как

отсутствие связи между количеством ДНК в расчете на гаплоид-

ный геном и таксономическим статусом видов, а также много-

численные примеры существования огромных различий в содержа-

нии ДНК между близкородственными видами (так называемый

"С-парадокс") свидетельствуют о том, что далеко не все

участки ДНК связаны с информационными функциями. Понятия ге-

нома и ДНК в значительной степени тождественны, так как

основные принципы организации и функционирования генома це-

ликом определяются свойствами ДНК. Присущие этим молекулам

потенциальные возможности практически неограниченного струк-

турного разнообразия определяют все многообразие мира живых

существ, как на уровне межвидовых, так и индивидуальных раз-

личий в пределах одного вида (Баев и др.,1990; Ратнер,1985).

Процесс эволюции и дифференцировки отдельных видов, как

правило, сопровождался накоплением изменений в структуре ге-

нома. Это касается, прежде всего, таких параметров, как ло-

кализация и характер упаковки ДНК в клетках; количество ДНК,

приходящееся на гаплоидный геном; типы, соотношение и функ-

ции кодирующих и некодирующих нуклеотидных последователь-

ностей; регуляция экспрессии генов; межпопуляционная вариа-

бильность и филогенетический консерватизм первичной структу-

ры генома. В пределах одного вида основные параметры генома

достаточно постоянны, а внутривидовое разнообразие обеспечи-

вается за счет мутационной изменчивости, то есть выпадения,

вставки или замены нуклеотидов на сравнительно небольших

участках ДНК. Чаще всего такие изменения касаются не-

экспрессируемых элементов генома (интронов, псевдогенов,

межгенных спэйсерных участков ДНК и т.д.).

Геномы эукариот, по-существу, можно рассматривать как

мультигеномные симбиотческие конструкции, состоящие из обли-

гатных и факультативных элементов (Golubovsky, 1995). Основу

облигатных элементов составляют структурные локусы, коли-

чество и расположение которых в геноме достаточно постоянно.

Присутствие в хромосомах некоторых видов повторяющихся ДНК,

амплифицированных участков, ретровирусных последователь-

ностей, псевдогенов, также как наличие в клетке эписом, рет-

ротранскриптов, ампликонов, дополнительных B-хромосом и раз-

личных цитосимбионтов (вирусов, бактерий, простейших) явля-

ется не строго обязательным, их количество и положение может

значительно варьировать, то есть эти элементы являются фа-

культативными. В то же время участие факультативных элемен-

тов в наследственной передаче признаков, в формировании му-

тационной изменчивости и в эволюционных преобразованиях ви-

дов несомненно доказано. Кроме того, существует непрерывный

переход от одних состояний к другим за счет инсерции

экстрахромосомных ДНК в хромосомы и выстраивания транспозо-

ноподобных мобильных элементов из хромосом. Следовательно,

несмотря на значительные отличия факультативных последова-

тельностей от облигатных по характеру основных информацион-

ных процессов (репликации, транскрипции, трансляции и сегре-

гации), они также должны рассматриваться, как важнейшие эле-

менты генома.

Остановимся теперь более детально на основных принципах

организации генома человека. В каждой диплоидной клетке с 46

хромосомами содержится около 6 пикограмм ДНК, а общая длина

гаплоидного набора из 23 хромосом составляет 3.5 * 10!9 пар

нуклеотидов (Kao, 1985). Этого количества ДНК достаточно для

кодирования нескольких миллионов генов. Однако, по многим

независимым оценкам истиное число структурных генов нахо-

дится в пределах от 50 000 до 100 000. В разделе 2.4 изложе-

ны современные подходы, используемые для подсчета общего ко-

личества генов, из которых следует, что наиболее вероятная

оценка их числа составляет около 80 000. Сопоставляя это

значение со средними размерами гена и соотношением между ве-

личиной их экзонных и интронных областей, можно заклю-

чить,что кодирующие последовательности ДНК занимают не более

10-15% всего генома (McKusick, Ruddle, 1977). Таким образом,

основная часть молекул ДНК не несет информации об амино-

кислотной последовательности белков, составляющих основу лю-

бого живого организма, и не кодирует структуру рибосомаль-

ных, транспортных, ядерных и других типов РНК. Функции этой

"избыточной" (junk) ДНК не ясны, хотя ее структура изучена

достаточно подробно. Предполагается, что эта ДНК может

участвовать в регуляции экспрессии генов и в процессинге

РНК, выполнять структурные функции, повышать точность гомо-

логичного спаривания и рекомбинации, способствовать успешной

репликации ДНК и, возможно, является носителем принципиально

иного генетического кода с неизвестной функцией.

Наиболее общая характеристика генома может быть получена

с помощью анализа кинетики реассоциации молекул ДНК. Динами-

ка плавления геномной ДНК обнаруживает присутствие по край-

ней мере трех различающихся по химической сложности фракций

(Льюин, 1987; Газарян, Тарантул, 1983). Быстро ренатурирую-

щая фракция ДНК состоит из относительно коротких высокопов-

торяющихся последовательностей; в промежуточную фракцию вхо-

дит множество умеренно повторяющихся ДНК - более протяжен-

ных, но представленных меньшим числом копий; медленно рена-

турирующая фракция объединяет в себе уникальные последова-

тельности ДНК, встречающиеся в геноме не более 1-2 раз.

С помощью молекулярного анализа проведена идентификация

основных классов повторяющихся последовательностей ДНК,

составляющих более 35% всего генома человека и включающих

сателлитную ДНК, инвертированные повторы, умеренные и низко-

копийные повторы, а также мини- и микросателлитные последо-

вательности ДНК. Классификация этих типов повторов достаточ-

но условна и основана, главным образом, на двух характе-

ристиках: длине повторяющихся коровых единиц, которая может

варьировать от 1-2 до более, чем 2000 п.о., и числе их ко-

пий, также меняющихся в очень широких пределах - от десятка

до миллиона на гаплоидный геном. Не менее важными характе-

ристиками различных классов повторяющихся ДНК являются нук-

леотидная последовательность "коровых" единиц повтора, спе-

цифичность их организации, хромосомная локализация, внутри-

и межвидовая стабильность, а также возможные функции этих

типов ДНК.


Раздел 2.2. Повторяющиеся последовательности ДНК.


Сателлитная ДНК это класс высокоповторяющихся последо-

вательностей, составляющих около 10% всего генома человека

(Kao, 1985). При центрифугировании геномной ДНК в градиенте

плотности CsCl эти последовательности образуют четыре от-

дельных сателлитных пика с различными средними значениями

плавучей плотности. Методом гибридизации in situ показано

присутствие сателлитной ДНК преимущественно в центромерных,

теломерных и гетерохроматиновых районах большинства хро-

мосом, при этом характер гибридизации сходен для всех четы-

рех групп и не зависит от принадлежности ДНК-зондов к се-

мействам повторов, образующих различные сателлитные пики. В

каждой из этих групп, однако, присутствует небольшое коли-

чество последовательностей, имеющих специфическую хромосом-

ную локализацию. Так например, около 40% длинного плеча Y

хромосомы составляет семейство последовательностей, тандемно

повторяющихся более 3000 раз и не найденных в других хро-

мосомах.

Выделяют три основных типа сателлитной ДНК: (1) короткие

- от 2 до 20 п.о., стабильные тандемные повторы с кратностью

в несколько десятков тысяч раз, которые иногда перемежаются

с неповторяющимися последовательностями; (2) кластеры более

протяженных повторов, слегка различающихся по нуклеотидной

последовательности; (3) сложные, достигающие нескольких со-

тен пар нуклеотидов, повторяющиеся последовательности раз-

личной степени гомологии (Газарян,Тарантул,1983). К послед-

нему типу относятся альфа-сателлитные или альфоидные ДНК,

среди которых найдено много хромосом-специфических последо-

вательностей. Размеры повтрояющихся "коровых" единиц альфо-

идной ДНК составляют около 170-200 п.о. В геноме человека и

других приматов эти мономеры организованы в кластеры по 20 и

более "коровых" единиц. После расщепления рестриктазой BamHI

в альфоидной ДНК выявляется серия фрагментов, длиной около 2


Информация о работе «Литература - Другое (книга по генетике)»
Раздел: Медицина, здоровье
Количество знаков с пробелами: 584410
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
29707
0
0

... активных факторов в биосфере. Поэтому генетико-гигиеническое нормирование содержания подобных факторов в окружающей среде является обязательным компонентом профилактики заболеваемости человека. Генетика человека на этапе ее становления обозначалась в нашей стране в духе времени – евгеникой. Обсуждение возможностей евгеники, совпавшее по времени со стартом и быстрым развитием генетических ...

Скачать
50224
0
0

нетика, микробиология, вирусология. Генетика человека — раздел генетики, изучающий закономерности наследования и изменчивости признаков у человека. Глава 2. Русские учёные в развитии генетики генетика наследственность ученый лобашев филипченко Филипченко Юрий Александрович У истоков отечественной генетики стояли выдающиеся ученые, которые пришли в новую науку из традиционных биологических ...

Скачать
87121
1
0

... в практику, должны быть разработаны методы для установления степени риска либо в отдельных семьях, либо путем скринирования всех родителей. Это изменит назначение медицинской генетики от генетики, консультирующей ретроспективно, к службе генетического предупреждения на перспективной основе. Может возникнуть новое отношение к ответственности родителей к воспроизводству потомства, которое вместе с ...

Скачать
876679
0
0

... гнезда", "Войны и мира", "Вишневого сада". Важно и то, что главный герой романа как бы открывает целую галерею "лишних людей" в русской литературе: Печорин, Рудин, Обломов.  Анализируя роман "Евгений Онегин", Белинский указал, что в начале XIX века образованное дворянство было тем сословием, "в котором почти исключительно выразился прогресс русского общества", и что в "Онегине" Пушкин "решился ...

0 комментариев


Наверх