000 STS, подавляющее большинство которых представляет собой
тандемные повторы 2 - 4 нуклеотидов. Благодаря выраженной
индивидуальной специфичности и достаточно стабильному менде-
левскому типу наследования STS-сайты нашли широкое примене-
ние и в молекулярной диагностике генных болезней, прежде
всего в качестве молекулярных маркеров для идентификации му-
тантных хромосом в семьях высокого риска (см. Главу VII).
Наличие большого числа гипервариабильных микро- и минисател-
литных последовательностей ДНК является характерной особен-
ностью генома человека. Аналогичные последовательности, об-
наруженные в геноме приматов, значительно более однородны,
что доказывает возможность существенного увеличения вариа-
бильности этих участков ДНК за сравнительно короткий эволю-
ционный промежуток (Юров,1988; Gray et al., 1991).
Сведения о мутабильности высокополиморфных последова-
тельностей в геноме человека весьма противоречивы. Показано,
однако, что в наиболее вариабильных минисателлитных локусах
частота мутаций может достигать 5% на гамету (Jeffreys et
al., 1988). Предполагается, что одной из главных функций ги-
первариабильных микро- и минисателлитных последовательностей
ДНК может быть контроль гомологичной рекомбинации в мейозе.
На культурах клеток показано стимулирующее влияние миниса-
теллитных последовательностей ДНК на гомологичную рекомбина-
цию. Так, инсерция синтезированной последовательности,
составленной на основе гипервариабильных минисателлитов в
геномную ДНК приводит к более, чем 10-кратному увеличению
числа реципрокных обменов, причем степень этого влияния об-
ратно пропорциональна расстоянию между STR и сайтом рекомби-
нации (Wahls et al., 1990). Вместе с тем, многие авторы об-
ращают внимание на достаточно высокую стабильность миниса-
теллитных аллелей, что позволяет их широко использовать как
для генетического маркирования, так и для популяционных
исследований и идентификации личности методом ДНК-фингерп-
ринта (Decorte,Cassiman 1993; Edwards et al.,1991; Ива-
нов,1989).
Для многих мутаций, локализованных в некодирующих
частях генома, характерны высокие уровни популяционного по-
лиморфизма. Необходимо, однако, подчеркнуть, что эта измен-
чивость не затрагивает общей структуры генома, определяющей
различия между видами. Более того, сопосталение первичных
нуклеотидных последовательностей сравнительно протяженных
секвенированных участков ДНК (области Т-рецепторных генов
длиной около 100 кб) обнаружило сохранение высокой степени
гомологии не только в кодирующих, но и, что особенно удиви-
тельно, в некодирующих частях этих последовательностей. Если
учесть, что эволюционно человек и мышь разделены почти 80
миллионами лет эволюции, эти данные рассматриваются как сви-
детельство функциональной значимости некодирующих частей
этих генов По-видимому, далеко не всякие мутации в некодиру-
ющих районах ДНК являются нейтральными и в определенных слу-
чаях они могут отрицательно влиять на жизнеспособность. К
сожалению, в настоящее время ничего или почти ничего неиз-
вестно о функциях некодирующих ДНК-последовательностей.
Высказывалось даже предположение, что их единственной функ-
цией является репликация. Отсюда возникло представление об
"эгоистической" или "паразитической" ДНК. Конечно, полностью
исключить наличие подобных паразитических последователь-
ностей ДНК в любом геноме нельзя. Тем ни менее, представля-
ется маловероятным, что значительная часть генома человека,
также как и других видов, относится к эгоистической ДНК.
По-видимому, наши знания о роли некодирующей или, как еще
говорят, "избыточной" ДНК все еще явно недостаточны. Ста-
бильность структурной организации генома в пределах вида
свидетельствует скорее о важной эволюционной роли некодирую-
щих ДНК-последовательностей и об их участии в процессах он-
тогенеза. Можно предполагать, что ответ на этот интригующий
вопрос в какой-то мере будет получен при расшифровке и срав-
нении полной первичной нуклеотидной последовательности гено-
мов у животных разных видов и, прежде всего, у человека и
мыши, где прогресс в секвенировании геномной ДНК особенно
значителен (см.Главу III). Уместно заметить, что проведенный
недавно компьютерный анализ генома человека позволяет пред-
полагать наличие в его некодирующей части особого, пока еще
непонятного генетического кода, смысл и значение которого
остаются загадочными ( ?).
Раздел 2.7 Мобильность генома, облигатные и факульта-
тивные элементы генома.
До сих пор мы рассматривали основные структурные эле-
менты генома человека, положение которых в соответствии с
представлениями классической генетики достаточно постоянно.
Начиная с 50-х годов стали накапливаться данные о существо-
вании большого числа мобильных генетических элементов,
присутствие которых в геноме не является обязательным, а их
топография и количество может варьировать в различных клет-
ках, тканях и у разных индивидуумов (McClintock, 1984; Berg,
Howe, 1989). У прокариот такие элементы получили название
транспозонов. Их структура и функции достаточно хорошо изу-
чены. Отличительной особенностью мобильных элементов явля-
ется способность существовать как в интегрированном с хро-
мосомой виде, так и в виде отдельных макромолекул - эписом,
плазмид, вирусных частиц. Почти 50 различных семейств мо-
бильных элементов описано у дрозофилы . Вместе эти последо-
вательности составляют около 12% гаплоидного набора
(Golubovsky, 1995). В геноме млекопитающих содержится до 50
000 диспергированных копий ретропозона LINE размером около
6500 пар основанийю. Семейство Alu- повторов, содержащее от
300 до 500 тысяч копий, также относится к числу мобильных
элементов генома (Сharlesworth et al.,1994). Явление лизоге-
нии, то есть присутствие вирусных последовательностей в
составе ДНК человека и наличие фрагментов генов человека в
вирусных геномах, служит одним из примеров мобильности ДНК и
возможности "горизонтальной" передачи наследственно закреп-
ленных признаков между видами. Мобильные ДНК, как правило,
относятся к факультативным элементам. Как уже отмечалось, не
существует четких границ между облигатными и факультативными
элементами генома, так как возможен взаимный переход от од-
ного состояния к другому. Структурные локусы или сегменты
хромосом могут трансформироваться в факультативные элементы
за счет амплификации, интеграции в мобильные элементы или
путем образования цитоплазматических ретротранскриптов. Об-
ратный переход от факультативных элементов к облигатным осу-
ществляется посредством инсерций, транспозон-индуцированных
перестроек и обратной транскрипции.
Факультативные элементы существуют в геноме как популя-
ции информативных макромолекул. Изменения, возникающие в них
под воздействием внешних факторов, носят совершенно иной ха-
рактер по сравнению с классическими мутациями в структурных
локусах. Для описания изменений в факультативных элементах
предложен термин " вариации" (Голубовский, 1985). Этот тер-
мин впервые использован Жакобом и Воллманом для описания по-
ведения эписом (Jacob, Wollman, 1961). Вариации могут приво-
дить к изменениям на генотипическом уровне, то есть к мута-
циям, вследствие простого перемещения факультативных элемен-
тов или сдвига в соотношении между факультативными и обли-
гатными элементами. В этих случаях мутации встречаются од-
новременно у многих индивидуумов. Подобные изменения упоря-
дочены, могут происходить сразу во многих локусах и отлича-
ются высокой сайт-специфичностью. Локализация структурных
перестроек, возникающих в результате вариаций, предопределе-
на первоначальной топографией факультативных элементов на
хромосомах. И наконец, сами вариации могут быть индуцированы
обычными "не-мутагенными" факторами, такими как температура
или межлинейные кроссы (Golubovsky, 1995). Факультативные
элементы могут рассматриваться как оперативная память гено-
ма, так как во многих случаях спонтанное возникновение мута-
ций в облигатных элементах опосредовано их активацией. Счи-
тается, в частности, что инсерционный мутагенез является
причиной спонтанного возникновения 70% видимых мутаций в
природных популяциях дрозофилы. Однако, у человека пока за-
регистрированы лишь единичные случаи возникновения мутаций
вследствие перемещения мобильных элементов генома (Vidaud et
al.,1993).
Раздел 2.8 Изохоры, метилирование, гиперчувствительные
сайты.
Перечисленные выше компоненты генома не случайным обра-
зом связаны с последовательностями нуклеотидов. И в этом
смысле можно говорить о существовании в геноме человека
структур более высокого иерархического порядка. Примером
служат изохоры - длинные, в среднем, свыше 300 кб сегменты
ДНК, гомогенные по композиции оснований или по GC-уровням.
62% генома состоит из GC-бедных изохор и в них локализовано
около 34% генов, 31% генома представлен GC-богатыми изохора-
ми, содержащими 38% генов, и в 3% изохор, обогащенных
GC-последовательностями (так называемых H3 изохор), нахо-
дится 28% генов (Mouchiroud et al., 1991; Saссone et al.,
1993). Таким образом, существуют относительно небольшие
участки ДНК, в которых плотность генов в 10 -20 раз выше,
чем в остальных последовательностях.
Другой общей чертой генома человека является то, что in
vivo значительная доля цитозиновых остатков в молекуле ДНК
метилирована, то-есть находится в форме 5-метилдезоксицити-
дина. Экспериментальное изучение характера метилирования
основано на сопоставлении рестрикционных фрагметов, образую-
щихся после обработки ДНК эндонуклеазами, для которых сайты
узнавания одинаковы и содержат в своем составе цитозин, но
действуют эти ферменты по-разному, в зависимости от того,
находится ли это основание в метилированном состоянии или
нет. В частности, рестриктазы - Msp1 и Hpa11, узнают после-
довательность CCGG, но в отличие от Msp1, Hpa11 не расщепля-
ет ДНК в тех сайтах, где внутренний CpG динуклеотид метили-
рован. Некоторые сегменты генома, особенно это относится к
повторяющимся последовательностям, полностью метилированы в
местах 5'-CCGG-3' и частично метилированы в 5'-GCGC-3' -
сайтах рестрикции для Hha1. В других сегментах наблюдается
характерный рисунок частичного метилирования в 5'-CCGG-3'
последовательностях (Behn-Krappa et al., 1991). Различные
индивидуумы, независимо от их этнического происхождения,
практически не различаются по характеру метилирования ДНК в
одних и тех же типах тканей, тогда как в процессе онтогене-
тической дифференцировки происходят значительные изменения
рисунков метилирования. В перевиваемых культурах клеток опу-
холевого происхождения число метилированных сайтов резко
уменьшено.
Высказано предположение о наличии прямой связи между
метилированием ДНК и состоянием генетической активности в
клетках. Существует класс белков, которые специфическим об-
разом связываются с метилированными участками ДНК, делая их
недоступными для действия ряда ферментов, в том числе, воз-
можно, и для полимераз. Получено много прямых эксперимен-
тальных доказательств роли метилирования ДНК в инактивации
эукариотических промоторов, а, значит, и в регуляции актив-
ности генов. Напротив, гипометилирование промоторной области
генов, в особенности CpG островков, как правило, свиде-
тельствует о функциональной активности генов. Показано, что
необычные структуры в молекуле ДНК, также как экзогенная
ДНК, инкорпорированная в процессе генетической трансформа-
ции, нередко подвергаются метилированию. Известно, что мети-
лирование играет важную роль в инактивации X хромосомы у са-
мок, в регуляции экспрессии генов в процессе развития, а
также непосредственно вовлечено в феномен хромосомного (ге-
номного) импринтинга, связанного с различиями пенетрантности
некоторых аллелей в зависимости от их происхождения, то есть
прохождения через материнский или отцовский гаметогенез (Ба-
ранов, 1991).
В GC-богатых изохорах локализовано большое количество
CpG островков - последовательностей от 500 до 2000 п.о., ха-
рактеризующихся очень высоким содержанием гуанина и цитозина
(G+C > 60%), представленных в виде кластеров неметилирован-
ных CpG дуплетов и, так называемых, G/C боксов - локусов,
родственных сайту узнавания для одного из транскрипционных
факторов Sp1 - (G)4C(G)4C (Lindsay, Bird, 1987; Bird, 1986;
Aissani, Bernardi, 1991). CpG острова содержат много сайтов
узнавания для чувствительной к метилированию эндонуклеазы
HpaII, а также сайты для редкощепящих рестриктаз, узнающих
неметилированные CpG дуплеты. В частности, более 80%
Nor1-сайтов связано с CpG-богатыми островками. Как правило,
CpG островки локализованы в 5'- фланкирующих последователь-
ностях, 5'-зкзонах и 5'-интронах всех изученных хаузки-
пинг-генов и 40% тканеспецифических генов. CpG островки яв-
ляются характерной особенностью транскрибируемых участков
генома. Их идентификация в клонированных последовательностях
геномных библиотек существенно облегчает поиск конкретных
структурных генов (см.раздел 2.4) . Наибольшая плотность CpG
островков наблюдается в теломерных участках хромосом 1, 9,
15, 16, 17, 19, 20, 22 (Antonarakis,1994). Точные молекуляр-
ные методы регистрации СрG островков показали, что их число
в геноме человека приближается к 45000 (
Antequera,Bird,1993).
Можно также отметить существование в геноме человека
сайтов, гиперчувствительных к действию ДНК-азы 1 и структур-
но отличающихся от основной массы хроматина. Присутствие та-
ких сайтов показано для многих генов млекопитающих и, по-ви-
димому, это необходимое, но не достаточное условие их
экспрессии. Локализация гиперчувствительных сайтов может ме-
няться в процессе развития и под действием гормонов. В неко-
торых случаях эти участки маркируют положение транскрипцион-
ных регуляторных элементов генома, действующих как в положи-
тельном, так и в отрицательном направлениях. В других случа-
ях это области функционально активных генов, находящихся в
деспирализованном состоянии и имеющих однонитевую структуру.
Именно такие однонитевые участки ДНК особенно выско чувстви-
тельны к ДНК-азе 1. На этом их свойстве основан метод
ник-трансляции in situ, позволяющий непосредственно на хро-
мосомных препаратах визуализировать функционально активные
районы хромосом. С этой целью хромосомные препараты обраба-
тывают ДНК-азой 1, после чего непосредственно на них с по-
мощью ДНК-полимеразы проводят синтез ДНК в присутствии мече-
ных нуклеотидов. При этом метка включается преимущественно
только в те участки хромосом,где находятся функционально ак-
тивные гены (Verma, Babu, 1989).
ГЛАВА II.
ГЕНОМ ЧЕЛОВЕКА, СТРУКТУРА ГЕНОВ.
Раздел 2.1. Определение генома и его основных элемен-
тов.
Термин геном используется для обозначения полной гене-
тической системы клетки, определяющей характер онтогенети-
ческого развития организма и наследственную передачу в ряду
поколений всех его структурных и функциональных признаков.
Понятие генома может быть применено к таксономической груп-
пе, виду, отдельной особи, клетке, микроорганизму или ви-
русу. Так, можно говорить о структуре генома эукариот и про-
кариот, сравнивать геномы разных видов, изучать особенности
строения генома у конкретных индивидуумов или следить за из-
менениями, происходящими в геноме специфических клеток в
процессе их онтогенетической дифференцировки. Часто геном
определяется как генетическая информация, заключенная в мо-
лекулах ДНК одной клетки. Однако, такие факты, как
отсутствие связи между количеством ДНК в расчете на гаплоид-
ный геном и таксономическим статусом видов, а также много-
численные примеры существования огромных различий в содержа-
нии ДНК между близкородственными видами (так называемый
"С-парадокс") свидетельствуют о том, что далеко не все
участки ДНК связаны с информационными функциями. Понятия ге-
нома и ДНК в значительной степени тождественны, так как
основные принципы организации и функционирования генома це-
ликом определяются свойствами ДНК. Присущие этим молекулам
потенциальные возможности практически неограниченного струк-
турного разнообразия определяют все многообразие мира живых
существ, как на уровне межвидовых, так и индивидуальных раз-
личий в пределах одного вида (Баев и др.,1990; Ратнер,1985).
Процесс эволюции и дифференцировки отдельных видов, как
правило, сопровождался накоплением изменений в структуре ге-
нома. Это касается, прежде всего, таких параметров, как ло-
кализация и характер упаковки ДНК в клетках; количество ДНК,
приходящееся на гаплоидный геном; типы, соотношение и функ-
ции кодирующих и некодирующих нуклеотидных последователь-
ностей; регуляция экспрессии генов; межпопуляционная вариа-
бильность и филогенетический консерватизм первичной структу-
ры генома. В пределах одного вида основные параметры генома
достаточно постоянны, а внутривидовое разнообразие обеспечи-
вается за счет мутационной изменчивости, то есть выпадения,
вставки или замены нуклеотидов на сравнительно небольших
участках ДНК. Чаще всего такие изменения касаются не-
экспрессируемых элементов генома (интронов, псевдогенов,
межгенных спэйсерных участков ДНК и т.д.).
Геномы эукариот, по-существу, можно рассматривать как
мультигеномные симбиотческие конструкции, состоящие из обли-
гатных и факультативных элементов (Golubovsky, 1995). Основу
облигатных элементов составляют структурные локусы, коли-
чество и расположение которых в геноме достаточно постоянно.
Присутствие в хромосомах некоторых видов повторяющихся ДНК,
амплифицированных участков, ретровирусных последователь-
ностей, псевдогенов, также как наличие в клетке эписом, рет-
ротранскриптов, ампликонов, дополнительных B-хромосом и раз-
личных цитосимбионтов (вирусов, бактерий, простейших) явля-
ется не строго обязательным, их количество и положение может
значительно варьировать, то есть эти элементы являются фа-
культативными. В то же время участие факультативных элемен-
тов в наследственной передаче признаков, в формировании му-
тационной изменчивости и в эволюционных преобразованиях ви-
дов несомненно доказано. Кроме того, существует непрерывный
переход от одних состояний к другим за счет инсерции
экстрахромосомных ДНК в хромосомы и выстраивания транспозо-
ноподобных мобильных элементов из хромосом. Следовательно,
несмотря на значительные отличия факультативных последова-
тельностей от облигатных по характеру основных информацион-
ных процессов (репликации, транскрипции, трансляции и сегре-
гации), они также должны рассматриваться, как важнейшие эле-
менты генома.
Остановимся теперь более детально на основных принципах
организации генома человека. В каждой диплоидной клетке с 46
хромосомами содержится около 6 пикограмм ДНК, а общая длина
гаплоидного набора из 23 хромосом составляет 3.5 * 10!9 пар
нуклеотидов (Kao, 1985). Этого количества ДНК достаточно для
кодирования нескольких миллионов генов. Однако, по многим
независимым оценкам истиное число структурных генов нахо-
дится в пределах от 50 000 до 100 000. В разделе 2.4 изложе-
ны современные подходы, используемые для подсчета общего ко-
личества генов, из которых следует, что наиболее вероятная
оценка их числа составляет около 80 000. Сопоставляя это
значение со средними размерами гена и соотношением между ве-
личиной их экзонных и интронных областей, можно заклю-
чить,что кодирующие последовательности ДНК занимают не более
10-15% всего генома (McKusick, Ruddle, 1977). Таким образом,
основная часть молекул ДНК не несет информации об амино-
кислотной последовательности белков, составляющих основу лю-
бого живого организма, и не кодирует структуру рибосомаль-
ных, транспортных, ядерных и других типов РНК. Функции этой
"избыточной" (junk) ДНК не ясны, хотя ее структура изучена
достаточно подробно. Предполагается, что эта ДНК может
участвовать в регуляции экспрессии генов и в процессинге
РНК, выполнять структурные функции, повышать точность гомо-
логичного спаривания и рекомбинации, способствовать успешной
репликации ДНК и, возможно, является носителем принципиально
иного генетического кода с неизвестной функцией.
Наиболее общая характеристика генома может быть получена
с помощью анализа кинетики реассоциации молекул ДНК. Динами-
ка плавления геномной ДНК обнаруживает присутствие по край-
ней мере трех различающихся по химической сложности фракций
(Льюин, 1987; Газарян, Тарантул, 1983). Быстро ренатурирую-
щая фракция ДНК состоит из относительно коротких высокопов-
торяющихся последовательностей; в промежуточную фракцию вхо-
дит множество умеренно повторяющихся ДНК - более протяжен-
ных, но представленных меньшим числом копий; медленно рена-
турирующая фракция объединяет в себе уникальные последова-
тельности ДНК, встречающиеся в геноме не более 1-2 раз.
С помощью молекулярного анализа проведена идентификация
основных классов повторяющихся последовательностей ДНК,
составляющих более 35% всего генома человека и включающих
сателлитную ДНК, инвертированные повторы, умеренные и низко-
копийные повторы, а также мини- и микросателлитные последо-
вательности ДНК. Классификация этих типов повторов достаточ-
но условна и основана, главным образом, на двух характе-
ристиках: длине повторяющихся коровых единиц, которая может
варьировать от 1-2 до более, чем 2000 п.о., и числе их ко-
пий, также меняющихся в очень широких пределах - от десятка
до миллиона на гаплоидный геном. Не менее важными характе-
ристиками различных классов повторяющихся ДНК являются нук-
леотидная последовательность "коровых" единиц повтора, спе-
цифичность их организации, хромосомная локализация, внутри-
и межвидовая стабильность, а также возможные функции этих
типов ДНК.
Раздел 2.2. Повторяющиеся последовательности ДНК.
Сателлитная ДНК это класс высокоповторяющихся последо-
вательностей, составляющих около 10% всего генома человека
(Kao, 1985). При центрифугировании геномной ДНК в градиенте
плотности CsCl эти последовательности образуют четыре от-
дельных сателлитных пика с различными средними значениями
плавучей плотности. Методом гибридизации in situ показано
присутствие сателлитной ДНК преимущественно в центромерных,
теломерных и гетерохроматиновых районах большинства хро-
мосом, при этом характер гибридизации сходен для всех четы-
рех групп и не зависит от принадлежности ДНК-зондов к се-
мействам повторов, образующих различные сателлитные пики. В
каждой из этих групп, однако, присутствует небольшое коли-
чество последовательностей, имеющих специфическую хромосом-
ную локализацию. Так например, около 40% длинного плеча Y
хромосомы составляет семейство последовательностей, тандемно
повторяющихся более 3000 раз и не найденных в других хро-
мосомах.
Выделяют три основных типа сателлитной ДНК: (1) короткие
- от 2 до 20 п.о., стабильные тандемные повторы с кратностью
в несколько десятков тысяч раз, которые иногда перемежаются
с неповторяющимися последовательностями; (2) кластеры более
протяженных повторов, слегка различающихся по нуклеотидной
последовательности; (3) сложные, достигающие нескольких со-
тен пар нуклеотидов, повторяющиеся последовательности раз-
личной степени гомологии (Газарян,Тарантул,1983). К послед-
нему типу относятся альфа-сателлитные или альфоидные ДНК,
среди которых найдено много хромосом-специфических последо-
вательностей. Размеры повтрояющихся "коровых" единиц альфо-
идной ДНК составляют около 170-200 п.о. В геноме человека и
других приматов эти мономеры организованы в кластеры по 20 и
более "коровых" единиц. После расщепления рестриктазой BamHI
в альфоидной ДНК выявляется серия фрагментов, длиной около 2
... активных факторов в биосфере. Поэтому генетико-гигиеническое нормирование содержания подобных факторов в окружающей среде является обязательным компонентом профилактики заболеваемости человека. Генетика человека на этапе ее становления обозначалась в нашей стране в духе времени – евгеникой. Обсуждение возможностей евгеники, совпавшее по времени со стартом и быстрым развитием генетических ...
нетика, микробиология, вирусология. Генетика человека — раздел генетики, изучающий закономерности наследования и изменчивости признаков у человека. Глава 2. Русские учёные в развитии генетики генетика наследственность ученый лобашев филипченко Филипченко Юрий Александрович У истоков отечественной генетики стояли выдающиеся ученые, которые пришли в новую науку из традиционных биологических ...
... в практику, должны быть разработаны методы для установления степени риска либо в отдельных семьях, либо путем скринирования всех родителей. Это изменит назначение медицинской генетики от генетики, консультирующей ретроспективно, к службе генетического предупреждения на перспективной основе. Может возникнуть новое отношение к ответственности родителей к воспроизводству потомства, которое вместе с ...
... гнезда", "Войны и мира", "Вишневого сада". Важно и то, что главный герой романа как бы открывает целую галерею "лишних людей" в русской литературе: Печорин, Рудин, Обломов. Анализируя роман "Евгений Онегин", Белинский указал, что в начале XIX века образованное дворянство было тем сословием, "в котором почти исключительно выразился прогресс русского общества", и что в "Онегине" Пушкин "решился ...
0 комментариев