Распространение результатов выборочного распределения на генеральную совокупность

Статистика
Классификация статистических показателей Критический момент – момент времени, по состоянию на который регистрируются данные. Устанавливается при исследовании динамично изменяющегося объекта Виды статистических группировок Частотные характеристики рядов распределения Средняя арифметическая величина и ее расчет прямым способом Степенные средние Измерители вариации Упрощенный способ расчета дисперсии и средне квадратического отклонения Моменты распределения Ошибка выборки Малая выборка Распространение результатов выборочного распределения на генеральную совокупность Способ моментных наблюдений Классификация методов исследования взаимосвязей Парная регрессия Множественная корреляция и регрессия Обеспечение сопоставимости рядов динамики Изучение основной тенденции развития, социально-экономического развития во времени Корреляция в рядах динамики Сводные индексы Средние индексы
128810
знаков
46
таблиц
0
изображений

5. Распространение результатов выборочного распределения на генеральную совокупность.

Для этих целей используется два метода:

-   Метод прямого пересчета;

-   Метод поправочных коэффициентов.

Метод прямого пересчета применяется для определения по данным о выборочной доле величины интервала, в пределах которого в генеральной совокупности с заданной вероятностью находится число единиц, обладающих изучаемым признаком.

 
Пример: По данным выборочного контроля в партии яблок весом 20 тонн доля стандарта составила 97,5%. Предельная ошибка выборки с p=0,954 равнялась 0,5%. Определить вес стандартных яблок во всей партии.

w=0,975 (97,5%)

p=0,954

D=0,005 (0,5%)

Основное назначение метода поправочных коэффициентов – уточнение данных сплошного массового наблюдения посредством выборочных проверок. Обычно такие проверки осуществляются инструкторами-контролерами по результатам проведенных переписей.

Пример: По результатам контрольного обхода счетного участка инструктором-контролером получены уточненные сведения о численности населения 589 человек вместо 572 зарегистрированных счетчиков. Всего на территории инструкторского участка по данным переписи проживало 3893 человека.

- скорректированная численность.


6. Классификация способов отбора.

Методология и результаты расчета основных параметров выборки непосредственно зависят от способа отбора единиц из генеральной совокупности.

Способ отбора – это определенная система организации выборочного исследования. Применение того или иного способа зависит от цели исследования условий выборки, специфики объекта исследования, необходимой точности и оперативности результатов и от средств выделенных на исследования.

Все способы отбора разделяются на 3 вида:

-   Индивидуальный;

-   Групповой;

-   Комбинированный.

При индивидуальном виде отбирают отдельные единицы совокупности.

При групповом виде отбирают группы, серии единиц совокупности (например: выбрали из контейнера несколько ящиков и все их проверили).

Комбинированный способ сочетает индивидуальный и групповой.

Если выборочная совокупность получена сразу, отбор называют одноступенчатым.

При наличии нескольких последовательных этапов отбора – выборка считается многоступенчатой.

Единица отбора меняется на каждой ступени. В отличии от многоступенчатой – многофазная выборка сохраняет одну и ту же единицу на всех стадиях отбора. Однако программа наблюдения постепенно расширяется.

В зависимости от применяемой схемы отбора различают:

-   Повторный;

-   Бесповторный.

Каждый из видов отбора может осуществляться следующими способами:

1.   Собственно случайным;

2.   Механическим;

3.   Типическим (стратефицированным);

4.   Серийным (гнездовым);

5.   Комбинированным.

7. Организация отбора различными способами и оценка надежности полученных результатов.

Различные способы отбора отличаются неодинаковой методикой формирования выборки и различными алгоритмами расчета ошибок репрезентативности.

Собственно случайный отбор организуется таким образом, чтобы у всех единиц генеральной совокупности были равные возможности попасть в выборку. Это обеспечивается отбором по жребию, по таблицам случайных чисел или с помощью генераторов случайных чисел. Независимо от того, как будут отбирать единицы, их обязательно нумеруют. При отборе по жребию эти номера наносятся на карточки, шары и т.п., которые затем тщательно перемешиваются и из них наугад отбирается количество карточек, равное численности отбора.

Таблица случайных чисел это матрица 4 или 5 чисел, каждая цифра которой не зависит от остальных цифр данного числа и других чисел. В зависимости от численности выборки из таблицы выбираются одно, двух, трех или четырехзначное число. Числа можно отбирать по столбцам или строкам таблицы (начиная с любой строки или столбца) заранее заданным алгоритмом отбора.

 В компьютерах и некоторых калькуляторах имеется генератор случайных чисел, который выводит на экран случайные числа.

Средняя ошибка собственно случайного повторного или бесповторного отбора определяется по формуле: см. пункт (2).

Механический отбор это направленная выборка из совокупности, предварительно упорядоченной по существующему или несуществующему признаку.

На первом этапе генеральная совокупность упорядочивается по какому-либо признаку. Независимо от признака при механическом отборе устанавливается пропорция отбора по формуле: N/n.

Если совокупность сгруппирована по несущественному признаку, то безразлично, с какой единицы начинать отбор.

Если совокупность сгруппирована или упорядочена по существенному признаку, то отбор следует начинать с середины первой группы.

Средняя ошибка механического отбора рассчитывается по формулам для случайного отбора. Это справедливо, когда отбор производился из совокупности, упорядоченной по несущественному признаку.

 Если же совокупность была упорядочена по существенному признаку, то такой способ расчета несколько завышает среднюю ошибку выборки.

В данном случае можно было использовать среднюю из внутригрупповых дисперсий, а не общую дисперсию.

Типическая выборка (стратефицированная). При этой выборке генеральная совокупность вначале разбивается на типичные группы (страты), из которых производится случайный отбор единиц. Такая выборка гарантирует представительство всех типичных групп выборочной совокупности, что снижает ошибку выборки. Существуют пропорциональный и непропорциональный способы типического отбора.

При пропорциональном способе из каждой группы отбирается число единиц пропорциональное либо численности группы, либо внутригрупповой вариации изучаемого признака.

При типическом повторном отборе пропорциональном численности групповая средняя ошибка выборки определяется по формуле:


- средняя ошибка выборки для бесповторного отбора;

Если исследуется доля единиц совокупности, обладающих изучаемым признаком, то средние ошибки и дисперсия:

 
 

- для повторного отбора;

- для бесповторного отбора.

Пример: Для изучения средних цен одного блюда в предприятии общественного питания произведена 10% выборка пропорциональная численности групп.

Предприятия

Численность выборки,

Средняя цена,

Внутригрупповая дисперсия,

Закусочные 21 19,3 68,2 405,3 1432,2
Кафе 24 42,5 151,45 1020 3634,8
Рестораны 15 63,2 342,5 948 5137,5
60 39,56 2373,3 10204,5

Для расчетов нужно рассчитать среднюю из внутригрупповых дисперсий:

Предельная ошибка типической выборки с p=0,954

Доверительный интервал средней цены блюда

В 954 случаях из 1000 средняя цена блюда в генеральной совокупности будет не ниже 36 руб. 36 коп. и не выше 42 руб. 76 коп.

Оптимальная численность типической выборки пропорциональна численности групп, определяется по формулам:

 

- для повторного отбора;

- для бесповторного отбора.

Каковая должна быть численность выборки, чтобы с p=0,954 можно было бы утверждать, что предельная ошибка не превысит 3 руб. 50 коп.

Численность, подлежащая отбору из отдельных типических групп, рассчитывается по формуле:

 

Из 600 предприятий – 210 закусочных, 240 кафе, 150 ресторанов.

Наиболее из точных пропорциональных способов типического отбора является отбор пропорциональной вариации значений признака в группах. Данный отбор целесообразен при наличии генеральных внутригрупповых дисперсий. Это возможно, когда выборка осуществляется для контроля данных сплошного наблюдения или когда имеются данные предшествующего сплошного наблюдения.

Численность выборочных групп определяется по формуле:

 

- численность выборки из j-й типической группы;

- генеральная внутригрупповая дисперсия;

 - численность составляющих типических групп в генеральной совокупности.

 

Средняя ошибка выборки бесповторного типического отбора пропорциональна вариации признака в группах. Определяется по формуле:

 

Данный способ отбора дает ошибку меньшую, чем отбор пропорциональный численности групп.

Наиболее общим случаем является непропорциональный типический отбор. При произвольных пропорциях формирования типических выборочных групп средняя ошибка выборки рассчитывается по формуле:

 

 - средние ошибки выборки в каждой типической группе;

 - численность соответствующих типических групп.

 

При этом, ошибки средние выборки по группам определяются по формулам:

 
- внутригрупповая дисперсия.

- для повторного отбора;

- для бесповторного отбора.

Серийный или гнездовой отбор – это случайный выбор групп единиц с последующим сплошным наблюдением внутри отобранных серий. Данная выборка применяется преимущественно для контроля качества товаров, когда целесообразно вскрывать и исследовать отдельные упаковки. Это разновидность направленного отбора, способствующего снижению ошибки выборки. Благодаря сплошному исследованию гнезд частные дисперсии не оказывают влияние на ошибку репрезентативности, которая зависит только от вариации серийных средних, то есть от межгрупповой дисперсии, определяется по формуле:

 

 - частная выборочная дисперсия;

 - общая средняя серийной выборки;

 - число отобранных серий.

 

Средняя ошибка серийной выборки определяется по формулам:
 
- для повторного отбора;
 

- для бесповторного отбора.

Пример: при проверке качества обуви партии 500 коробов отобрано в случайном порядке и проверено 10 пар обуви. Число стандартных пар в коробах распределялось следующим образом.

№ коробов 1 2 3 4 5 6 7 8 9 10 Итого

Число стандартных

пар в

коробе ().

48 45 50 49 47 48 50 46 48 49 480
2304 2025 2500 2401 2209 2304 2500 2116 2304 2401 23054

Если становится задача с вероятностью 0,954 определить число стандартных пар обуви в коробе и доверительные интервалы доли стандартной обуви в партии, то предельная ошибка выборки . Доверительный интервал числа пар в генеральной совокупности определяется по формуле:

Доля стандартной обуви /

Комбинированная выборка – это сочетание группового и индивидуального отбора единиц наблюдения. Чаще всего сочетается серийный и собственно случайный отбор.

Ошибка выборки комбинированного отбора складывается из ошибок выборки ожидаемых по каждому способу отбора, входящему в комбинацию. Обычно применяют бесповторную комбинированную выборку, хотя теоретически возможен повторный комбинированный отбор. Комбинированная выборка по своей природе является многоступенчатой. Несмотря на простоту методологии многоступенчатого отбора, расчет его ошибки достаточно сложен и определяется по формуле:

 для равночисленного отбора на каждой ступени.

 - средние ошибки выборок на каждой из ступеней отбора;

 - численность ступеней отбора.

 


Информация о работе «Статистика»
Раздел: Статистика
Количество знаков с пробелами: 128810
Количество таблиц: 46
Количество изображений: 0

Похожие работы

Скачать
59066
6
49

... Доказать: По определению второй смешанной производной. Найдем по двумерной плотности одномерные плотности случайных величин X и Y. Т.к. полученное равенство верно для всех х, то подинтегральные выражение аналогично В математической теории вероятности вводится как базовая формула (1) ибо предлагается, что плотность вероятности как аналитическая функция может не существовать. Но т.к. в нашем ...

Скачать
15032
1
0

... распределения генеральной совокупности F(x) и – эмпирической функция распределения Fn(x) , построенной по выборке х1,…,хn, называется функция. Теорема. Если F(x) непрерывна, то распределения статистики Колмогорова Dn не зависит от F(x). Условные математические ожидания и условные распределения. Св-ва условных мат. ожиданий. Аналоги формул полной вероятности и формулы Байеса для мат. ожиданий ГММЕ ...

Скачать
61563
0
5

... дает возможность статистического моделирования, происходящих в населении процессов. Потребность в моделировании возникает в случае невозможности исследования самого объекта. Наибольшее число моделей, применяемых в статистике населения, разработано для характеристики его динамики. Среди них выделяются экспоненциальные и логистические. Особое значение в прогнозе населения на будущие периоды имеют ...

Скачать
46528
0
0

... на задний план традиционными постановками. Несколько лет назад при описании современного этапа развития статистических методов нами были выделены [29] пять актуальных направлений, в которых развивается современная прикладная статистика, т.е. пять "точек роста": непараметрика, робастность, бутстреп, интервальная статистика, статистика объектов нечисловой природы. Обсудим их. 5. ...

0 комментариев


Наверх