2. Измерители вариации.
Простейшим показателем вариации является размах колебаний: .
Достоинство этого показателя простота расчета, возможность использования для оценки вариации однородных совокупностей. Недостаток – неприемлемость для неоднородных совокупностей с редкими выбросами крайних значений признака.
Частично недостатки этого показателя устраняет межквартельный размах: . Однако, он характеризует вариацию только половины совокупности.
Для учета колеблемости всех значений признака применяют показатели среднего линейного отклонения, дисперсии и средне квадратического отклонения.
Средне линейное отклонение – среднее значение отклонений всех вариантов ряда от средней арифметической (иногда от моды или медианы):
- для несгруппированных данных;
- для сгруппированных данных.
Аналогичным по смыслу среднему линейному отклонению является показатель дисперсии и рассчитываемый на его основе показатель средне квадратического отклонения.
Дисперсия – рассеивание, данный показатель характеризует рассеивание значений признака относительно его средней величины.
- для несгруппированных данных;
- для сгруппированных данных.
Дисперсия – средне квадратическое отклонение всех вариантов ряда от средней арифметической. Если извлечь квадратный корень из дисперсии, получим средне квадратическое отклонение.
- для несгруппированных данных;
- для сгруппированных данных.
Несмотря на логическое сходство, дисперсия является более чувствительной к вариации и, следовательно, чаще применяемый показатель.
3. Прямой способ расчета показателей вариации.
Расчет показателей вариации заработной платы работников завода.
Группы со среднемесячной з/п, руб. | Число раб-в, | ||||||
До 1500 | 30 | 750 | 22500 | 1909,09 | 57272,7 | 3644628 | 109338843 |
1501-3000 | 75 | 2250 | 168750 | 409,09 | 30681,8 | 167355 | 12551653 |
3001-4500 | 45 | 3750 | 168750 | 1090,91 | 49090,9 | 1190083 | 53553719 |
Свыше 4501 | 15 | 5250 | 78750 | 2590,91 | 38863,6 | 6712810 | 100692149 |
Итого | 165 | 438750 | 175909 | 276136364 |
Заработная плата каждого из работников в среднем отклоняется от средне заработной платы на 1066,12 руб.
Средне квадратическое отклонение заметно больше, чем аналогичный ему по смыслу среднее линейное отклонение.
4. Свойства дисперсии и среднего квадратического отклонения.
Так же как и средняя дисперсия обладает рядом свойств, имеющих важное значение для понимания сущности этого показателя, методологии его расчета и практического использования для разработки более совершенных статистических методов.
Свойства дисперсии и средне квадратическое отклонение:
1) Если все варианты ряда уменьшить или увеличить на постоянное число, то величина дисперсии и средне квадратического отклонения не изменится. ;
2) Если все варианты ряда умножить или разделить на постоянное число, дисперсия соответственно увеличится или уменьшится в квадрат этого числа раз, а средне квадратическое отклонение в это число раз. ;
3) Если частоты ряда уменьшить или увеличить в постоянное число раз, то дисперсия и средне квадратическое отклонение от этого не изменится;
4) Дисперсия равна среднему квадрату вариантов ряда минус квадрат средней арифметической. ;
5) Общая дисперсия равна средней арифметической из частных дисперсий (внутригрупповых дисперсий) плюс дисперсии частных средних (межгрупповые дисперсии). Это свойство называется правилом сложения дисперсий, которое широко применяется в выборочном методе, методе измерений взаимосвязей явлений, а так же дисперсионном анализе.
- общая дисперсия;
- частная дисперсия;
- средняя из частных дисперсий, - численность соответствующей группы;
- межгрупповая дисперсия;
... Доказать: По определению второй смешанной производной. Найдем по двумерной плотности одномерные плотности случайных величин X и Y. Т.к. полученное равенство верно для всех х, то подинтегральные выражение аналогично В математической теории вероятности вводится как базовая формула (1) ибо предлагается, что плотность вероятности как аналитическая функция может не существовать. Но т.к. в нашем ...
... распределения генеральной совокупности F(x) и – эмпирической функция распределения Fn(x) , построенной по выборке х1,…,хn, называется функция. Теорема. Если F(x) непрерывна, то распределения статистики Колмогорова Dn не зависит от F(x). Условные математические ожидания и условные распределения. Св-ва условных мат. ожиданий. Аналоги формул полной вероятности и формулы Байеса для мат. ожиданий ГММЕ ...
... дает возможность статистического моделирования, происходящих в населении процессов. Потребность в моделировании возникает в случае невозможности исследования самого объекта. Наибольшее число моделей, применяемых в статистике населения, разработано для характеристики его динамики. Среди них выделяются экспоненциальные и логистические. Особое значение в прогнозе населения на будущие периоды имеют ...
... на задний план традиционными постановками. Несколько лет назад при описании современного этапа развития статистических методов нами были выделены [29] пять актуальных направлений, в которых развивается современная прикладная статистика, т.е. пять "точек роста": непараметрика, робастность, бутстреп, интервальная статистика, статистика объектов нечисловой природы. Обсудим их. 5. ...
0 комментариев