Упрощенный способ расчета дисперсии и средне квадратического отклонения

Статистика
Классификация статистических показателей Критический момент – момент времени, по состоянию на который регистрируются данные. Устанавливается при исследовании динамично изменяющегося объекта Виды статистических группировок Частотные характеристики рядов распределения Средняя арифметическая величина и ее расчет прямым способом Степенные средние Измерители вариации Упрощенный способ расчета дисперсии и средне квадратического отклонения Моменты распределения Ошибка выборки Малая выборка Распространение результатов выборочного распределения на генеральную совокупность Способ моментных наблюдений Классификация методов исследования взаимосвязей Парная регрессия Множественная корреляция и регрессия Обеспечение сопоставимости рядов динамики Изучение основной тенденции развития, социально-экономического развития во времени Корреляция в рядах динамики Сводные индексы Средние индексы
128810
знаков
46
таблиц
0
изображений

5. Упрощенный способ расчета дисперсии и средне квадратического отклонения.

Свойства дисперсии используются для упрощения методики ее расчета. В условиях развитой вычислительной техники данный способ имеет, прежде всего, иллюстративный характер и помогает понять сущность этого показателя.

Упрощенный способ расчета дисперсии и средне квадратического отклонения (метод расчета от условного нуля).

Среднемесячная з/п работников, руб.,

750 30 - 1 500 -1 2 -2 2
2 250 75 0 0 5 0 0
3 750 45 1 500 1 3 3 3
5 250 15 3 000 2 1 2 4
Итого 11 3 9

А=2250; k=1500;  с=15

6. Относительные показатели вариации.

Абсолютные измерители вариации (дисперсия, средне квадратическое отклонение) ограниченно пригодны для сравнительного анализа вариаций различных совокупностей.

Для цели сравнительного анализа применяют относительные показатели, коэффициенты вариации. Наиболее распространенной формой коэффициентов вариации является , он показывает, какой процент от средней арифметической составляет среднее квадратическое отклонение.

Вместо средне квадратического в числителе коэффициента вариации иногда используют среднее линейное отклонение .

Если среднее линейное отклонение определялось относительно медианы или моды, то соответствующие показатели вариации будут выглядеть , .

Коэффициенты вариации определенные по различным основаниям не одинаковы, поэтому, сопоставляя вариации разных совокупностей, нужно использовать коэффициенты вариации, рассчитанные по одной и той же величине.

Коэффициент вариации является так же количественной мерой однородности совокупности. Принято считать, что если , то совокупность количественно однородна. Чем меньше, тем лучше.

7. Стандартизация данных.

Коэффициенты вариации являются сводными оценками вариаций различных совокупностей. Однако они не позволяют сопоставить между собой значения признака у отдельных или групп единиц разных совокупностей.

Для подобных сравнений прибегают к стандартизации вариантов разных совокупностей по формулам:

, где ,  - это стандартизированные значения вариантов ряда x и y соответственно. В процессе стандартизации мы переходим от измерения вариантов в натуральных или стоимостных единицах к их измерению величинами соответствующих средне квадратических отклонений.

Пример: Стандартизация данных о доходах на одного члена семьи и среднедушевом потреблении мяса.

Доход на

одного

члена семьи,

тыс. руб./год,

Среднедушевое потребление

мяса,

60,7 12,3 -97,5 -25,6 9 506,25 655,36 -1,28 -1,31
84,2 19,1 -74 -18,8 5 476,00 353,44 -0,97 -0,96
112,4 23,1 -45,8 -14,8 2 097,64 219,04 -0,60 -0,76
144,5 35,6 -13,7 -2,3 187,69 5,29 -0,18 -0,12
180,1 49,5 21,9 11,6 479,61 134,56 0,29 0,59
240,9 57,3 82,7 19,4 6 839,29 376,36 1,09 0,99
284,6 68,4 126,4 30,5 15 976,96 930,25 1,66 1,56

1107,4

265,3

40 563,44

2 674,30

При стандартизации сгруппированных данных наряду с масштабированием вариантов ряда величинами соответствующих средне квадратических отклонений частоты этих рядов пересчитываются в частости.

Стандартизацию данных проводят, когда варианты сравниваемых рядов отличаются единицами измерения и порядком.

Стандартизация является важнейшим статистическим промежуточным этапом.

Стандартизация используется так же хорошо в теории выборочного метода.


Информация о работе «Статистика»
Раздел: Статистика
Количество знаков с пробелами: 128810
Количество таблиц: 46
Количество изображений: 0

Похожие работы

Скачать
59066
6
49

... Доказать: По определению второй смешанной производной. Найдем по двумерной плотности одномерные плотности случайных величин X и Y. Т.к. полученное равенство верно для всех х, то подинтегральные выражение аналогично В математической теории вероятности вводится как базовая формула (1) ибо предлагается, что плотность вероятности как аналитическая функция может не существовать. Но т.к. в нашем ...

Скачать
15032
1
0

... распределения генеральной совокупности F(x) и – эмпирической функция распределения Fn(x) , построенной по выборке х1,…,хn, называется функция. Теорема. Если F(x) непрерывна, то распределения статистики Колмогорова Dn не зависит от F(x). Условные математические ожидания и условные распределения. Св-ва условных мат. ожиданий. Аналоги формул полной вероятности и формулы Байеса для мат. ожиданий ГММЕ ...

Скачать
61563
0
5

... дает возможность статистического моделирования, происходящих в населении процессов. Потребность в моделировании возникает в случае невозможности исследования самого объекта. Наибольшее число моделей, применяемых в статистике населения, разработано для характеристики его динамики. Среди них выделяются экспоненциальные и логистические. Особое значение в прогнозе населения на будущие периоды имеют ...

Скачать
46528
0
0

... на задний план традиционными постановками. Несколько лет назад при описании современного этапа развития статистических методов нами были выделены [29] пять актуальных направлений, в которых развивается современная прикладная статистика, т.е. пять "точек роста": непараметрика, робастность, бутстреп, интервальная статистика, статистика объектов нечисловой природы. Обсудим их. 5. ...

0 комментариев


Наверх