Средняя арифметическая величина и ее расчет прямым способом

Статистика
Классификация статистических показателей Критический момент – момент времени, по состоянию на который регистрируются данные. Устанавливается при исследовании динамично изменяющегося объекта Виды статистических группировок Частотные характеристики рядов распределения Средняя арифметическая величина и ее расчет прямым способом Степенные средние Измерители вариации Упрощенный способ расчета дисперсии и средне квадратического отклонения Моменты распределения Ошибка выборки Малая выборка Распространение результатов выборочного распределения на генеральную совокупность Способ моментных наблюдений Классификация методов исследования взаимосвязей Парная регрессия Множественная корреляция и регрессия Обеспечение сопоставимости рядов динамики Изучение основной тенденции развития, социально-экономического развития во времени Корреляция в рядах динамики Сводные индексы Средние индексы
128810
знаков
46
таблиц
0
изображений

2. Средняя арифметическая величина и ее расчет прямым способом.

Средняя арифметическая – наиболее распространенный на практике вид средних. Различают 2 вида арифметических средних:

-   Невзвешенную (простую);

-   Взвешенную.

Средняя арифметическая невзвешенная рассчитывается для несгруппированных данных по формуле: , где  - сумма вариантов, N – их число – применяется обычно для совокупностей численностью N15.

Для массовых статистических совокупностей рассчитывается взвешенная средняя арифметическая по формуле: , где  - частоты.

Пример: Расчет средней выработки рабочими токарного цеха.

Количество деталей,

изготовленных рабочим

за смену, шт.

Число рабочих,

чел.,

Объем производства,

До 300 3 290 870
300-320 9 310 2790
320-340 15 330 4950
340-360 12 350 4200
360-380 6 370 2220
Свыше 380 6 390 2340
Итого 51 17370

Из таблицы:

1.   Средняя величина всегда тяготеет к вариантам с наибольшими частотами.

2.   Средняя величина может не совпадать ни с одним из вариантов дискретного ряда.

3.   Средняя величина находится внутри интервала значений вариантов ряда.

Сумма  помимо чисто математического, как правило, имеет смысловое значение, наличие смыслового значения – один из способов проверки правильности выбора средней.

Даже если варианты ряда представлены целыми числами, среднее может быть смешанным числом, иногда такой результат логически неправомерен. В этом случае его надо округлять, переводить в проценты или в промили.

3. Свойства средней арифметической величины.

Свойства средней важны для понимания механизма расчета этого показателя, а так же для разработки ряда более сложных статистических методик.

Свойства:

1.   Если из всех вариантов ряда вычесть или ко всем вариантам добавить постоянное число, то средняя арифметическая соответственно уменьшится или увеличится на это число. .

2.   Если все варианты ряда умножить или разделить на постоянное число, то средняя арифметическая соответственно увеличится или уменьшится в это число раз. .

3.   Если все частоты увеличить или уменьшить в постоянное число раз, то средняя от этого не изменится. .

4.   Сумма отклонений всех вариантов ряда от средней арифметической равна 0. (Нулевое свойство средней). .

5.   Общая средняя совокупности равна средней арифметической из частных средне взвешенных по объемам частных совокупностей. , где  - средняя арифметическая частных групп,  - численность соответствующих групп,  - общая средняя.

6.   Сумма квадратов отклонений всех вариантов ряда от средней арифметической меньше суммы квадратов их отклонений от любого другого постоянного числа.

Средний квадрат отклонений вариантов ряда от произвольного числа А равен дисперсии плюс квадрат разности между средней и этим числом А.

Данное свойство положено в основу метода наименьших квадратов, который широко применяется в исследовании статистических взаимосвязей.

4. Практическое использование свойств средней арифметической.

Свойства средней арифметической используются так же для упрощения методики ее расчета. В условиях малопроизводительной вычислительной техники эта методика обеспечивала значительную экономию времени и труда. В настоящее время данная методика служит наглядным образцом иллюстрации свойств средней.

Упрощенная методика расчета средней арифметической

(по данным о выработке рабочих токарей).

290 3 -40 -2 1 -2
310 9 -20 -1 3 -3
330 15 0 0 5 0
350 12 20 1 4 4
370 6 40 2 2 4
390 6 60 3 2 6
51 17 9

Данный метод называется так же методом расчета от условного нуля. В качестве условного нуля выбирается произвольное постоянное число А. Обычно это вариант ряда с наибольшей частотой. А=330.

Рассчитываем среднюю по новым вариантам: .

Пользуясь свойствами средней переходим от условного к фактической средней величине .


Информация о работе «Статистика»
Раздел: Статистика
Количество знаков с пробелами: 128810
Количество таблиц: 46
Количество изображений: 0

Похожие работы

Скачать
59066
6
49

... Доказать: По определению второй смешанной производной. Найдем по двумерной плотности одномерные плотности случайных величин X и Y. Т.к. полученное равенство верно для всех х, то подинтегральные выражение аналогично В математической теории вероятности вводится как базовая формула (1) ибо предлагается, что плотность вероятности как аналитическая функция может не существовать. Но т.к. в нашем ...

Скачать
15032
1
0

... распределения генеральной совокупности F(x) и – эмпирической функция распределения Fn(x) , построенной по выборке х1,…,хn, называется функция. Теорема. Если F(x) непрерывна, то распределения статистики Колмогорова Dn не зависит от F(x). Условные математические ожидания и условные распределения. Св-ва условных мат. ожиданий. Аналоги формул полной вероятности и формулы Байеса для мат. ожиданий ГММЕ ...

Скачать
61563
0
5

... дает возможность статистического моделирования, происходящих в населении процессов. Потребность в моделировании возникает в случае невозможности исследования самого объекта. Наибольшее число моделей, применяемых в статистике населения, разработано для характеристики его динамики. Среди них выделяются экспоненциальные и логистические. Особое значение в прогнозе населения на будущие периоды имеют ...

Скачать
46528
0
0

... на задний план традиционными постановками. Несколько лет назад при описании современного этапа развития статистических методов нами были выделены [29] пять актуальных направлений, в которых развивается современная прикладная статистика, т.е. пять "точек роста": непараметрика, робастность, бутстреп, интервальная статистика, статистика объектов нечисловой природы. Обсудим их. 5. ...

0 комментариев


Наверх