2. Средняя арифметическая величина и ее расчет прямым способом.
Средняя арифметическая – наиболее распространенный на практике вид средних. Различают 2 вида арифметических средних:
- Невзвешенную (простую);
- Взвешенную.
Средняя арифметическая невзвешенная рассчитывается для несгруппированных данных по формуле: , где - сумма вариантов, N – их число – применяется обычно для совокупностей численностью N15.
Для массовых статистических совокупностей рассчитывается взвешенная средняя арифметическая по формуле: , где - частоты.
Пример: Расчет средней выработки рабочими токарного цеха.
Количество деталей, изготовленных рабочим за смену, шт. | Число рабочих, чел., | Объем производства, | |
До 300 | 3 | 290 | 870 |
300-320 | 9 | 310 | 2790 |
320-340 | 15 | 330 | 4950 |
340-360 | 12 | 350 | 4200 |
360-380 | 6 | 370 | 2220 |
Свыше 380 | 6 | 390 | 2340 |
Итого | 51 | 17370 |
Из таблицы:
1. Средняя величина всегда тяготеет к вариантам с наибольшими частотами.
2. Средняя величина может не совпадать ни с одним из вариантов дискретного ряда.
3. Средняя величина находится внутри интервала значений вариантов ряда.
Сумма помимо чисто математического, как правило, имеет смысловое значение, наличие смыслового значения – один из способов проверки правильности выбора средней.
Даже если варианты ряда представлены целыми числами, среднее может быть смешанным числом, иногда такой результат логически неправомерен. В этом случае его надо округлять, переводить в проценты или в промили.
3. Свойства средней арифметической величины.
Свойства средней важны для понимания механизма расчета этого показателя, а так же для разработки ряда более сложных статистических методик.
Свойства:
1. Если из всех вариантов ряда вычесть или ко всем вариантам добавить постоянное число, то средняя арифметическая соответственно уменьшится или увеличится на это число. .
2. Если все варианты ряда умножить или разделить на постоянное число, то средняя арифметическая соответственно увеличится или уменьшится в это число раз. .
3. Если все частоты увеличить или уменьшить в постоянное число раз, то средняя от этого не изменится. .
4. Сумма отклонений всех вариантов ряда от средней арифметической равна 0. (Нулевое свойство средней). .
5. Общая средняя совокупности равна средней арифметической из частных средне взвешенных по объемам частных совокупностей. , где - средняя арифметическая частных групп, - численность соответствующих групп, - общая средняя.
6. Сумма квадратов отклонений всех вариантов ряда от средней арифметической меньше суммы квадратов их отклонений от любого другого постоянного числа.
Средний квадрат отклонений вариантов ряда от произвольного числа А равен дисперсии плюс квадрат разности между средней и этим числом А.
Данное свойство положено в основу метода наименьших квадратов, который широко применяется в исследовании статистических взаимосвязей.
4. Практическое использование свойств средней арифметической.
Свойства средней арифметической используются так же для упрощения методики ее расчета. В условиях малопроизводительной вычислительной техники эта методика обеспечивала значительную экономию времени и труда. В настоящее время данная методика служит наглядным образцом иллюстрации свойств средней.
Упрощенная методика расчета средней арифметической
(по данным о выработке рабочих токарей).
290 | 3 | -40 | -2 | 1 | -2 |
310 | 9 | -20 | -1 | 3 | -3 |
330 | 15 | 0 | 0 | 5 | 0 |
350 | 12 | 20 | 1 | 4 | 4 |
370 | 6 | 40 | 2 | 2 | 4 |
390 | 6 | 60 | 3 | 2 | 6 |
51 | 17 | 9 |
Данный метод называется так же методом расчета от условного нуля. В качестве условного нуля выбирается произвольное постоянное число А. Обычно это вариант ряда с наибольшей частотой. А=330.
Рассчитываем среднюю по новым вариантам: .
Пользуясь свойствами средней переходим от условного к фактической средней величине .
... Доказать: По определению второй смешанной производной. Найдем по двумерной плотности одномерные плотности случайных величин X и Y. Т.к. полученное равенство верно для всех х, то подинтегральные выражение аналогично В математической теории вероятности вводится как базовая формула (1) ибо предлагается, что плотность вероятности как аналитическая функция может не существовать. Но т.к. в нашем ...
... распределения генеральной совокупности F(x) и – эмпирической функция распределения Fn(x) , построенной по выборке х1,…,хn, называется функция. Теорема. Если F(x) непрерывна, то распределения статистики Колмогорова Dn не зависит от F(x). Условные математические ожидания и условные распределения. Св-ва условных мат. ожиданий. Аналоги формул полной вероятности и формулы Байеса для мат. ожиданий ГММЕ ...
... дает возможность статистического моделирования, происходящих в населении процессов. Потребность в моделировании возникает в случае невозможности исследования самого объекта. Наибольшее число моделей, применяемых в статистике населения, разработано для характеристики его динамики. Среди них выделяются экспоненциальные и логистические. Особое значение в прогнозе населения на будущие периоды имеют ...
... на задний план традиционными постановками. Несколько лет назад при описании современного этапа развития статистических методов нами были выделены [29] пять актуальных направлений, в которых развивается современная прикладная статистика, т.е. пять "точек роста": непараметрика, робастность, бутстреп, интервальная статистика, статистика объектов нечисловой природы. Обсудим их. 5. ...
0 комментариев