Степенные средние

Статистика
Классификация статистических показателей Критический момент – момент времени, по состоянию на который регистрируются данные. Устанавливается при исследовании динамично изменяющегося объекта Виды статистических группировок Частотные характеристики рядов распределения Средняя арифметическая величина и ее расчет прямым способом Степенные средние Измерители вариации Упрощенный способ расчета дисперсии и средне квадратического отклонения Моменты распределения Ошибка выборки Малая выборка Распространение результатов выборочного распределения на генеральную совокупность Способ моментных наблюдений Классификация методов исследования взаимосвязей Парная регрессия Множественная корреляция и регрессия Обеспечение сопоставимости рядов динамики Изучение основной тенденции развития, социально-экономического развития во времени Корреляция в рядах динамики Сводные индексы Средние индексы
128810
знаков
46
таблиц
0
изображений

5. Степенные средние.

Средняя арифметическая величина является частным случаем, который называется степенной средней.

 - для несгруппированных данных;

 - для сгруппированных данных.

Последовательно придавая k дискретное значение 0, 1, 2, 3, … и т.д. получим различные виды средних.

Если k=-1 степенные средние приобретают вид средней гармонической.

 - для несгруппированных данных;

 - для сгруппированных данных.

Пример: В течение рабочей смены 3 рабочих изготовляли детали. 1й рабочий затрачивая на изготовление 1 детали – 6 мин., 2й – 8 мин., 3й – 7,5 мин. Определить средние затраты времени на изготовление 1 детали.

Среднюю арифметическую взвешенную нельзя использовать для расчета, так как каждый из рабочих изготавливал за смену разное количество деталей. В числителе формулы отражается количество человеко-силы, а в знаменателе условное количество деталей, изготавливаемых за смену.

Пример: Продавец в течении нескольких дней продавал на рынке морковь. В первые 4 дня цена составляла 6 руб./кг, в последние 5 дней цена поднялась до 7 руб., а оставшаяся морковь была продана за 4,50 руб./кг. Поскольку данные о товарообороте отсутствуют, то для решения задачи применяется средняя гармоническая взвешенная:

При этом число дней продаж моркови по различным ценам рассматривается как показатель условного товарооборота.

Средняя гармоническая применяется в тех случаях, когда частоты ряда выражены в неявном виде.

Если величина k=0, то степенная средняя приобретает вид средней геометрической.

 для несгруппированных данных;

 для сгруппированных данных.

Средняя геометрическая применяется в тех случаях, когда отдельные варианты ряда резко отличаются от остальных.

Наиболее часто формулу средней геометрической используют для определения средних валютных курсов, эффективности валютных курсов, реальной эффективности валютных курсов (международная финансовая статистика).

Если k=1 степенная средняя принимает вид средней арифметической, взвешенной и невзвешенной.

Если k=2, средняя квадрата.

 для несгруппированных данных;

 - для сгруппированных данных.

Результаты статистического исследования зависят от того, насколько верно избран вид средней. Расчет средних, выполненных на основе одних и тех же данных разными способами дает различные результаты.

В курсе математической статистики доказано, что чем ниже степень средней, тем меньше ее величина. Это называется правилом мажорантности средней.

k -1 0 1 2

Доказано так же, что чем интенсивней колеблются значения вариантов ряда, тем больше разница между ними.

6. Мода и процентили.

Наряду со средними для характеристики распределения применяют такие показатели как мода и процентили, которые дополняют характеристику (обобщающую) и позволяют сравнивать между собой и находить различия в рядах с одинаковыми средними.

Мода – это наиболее часто встречающийся вариант ряда.

В дискретных рядах распределения модой является вариант, имеющий максимальную частотную характеристику.

В интервальных рядах мода определяется в два этапа. В начале определяется интервал, содержащий моду (модальный интервал), а затем рассчитывается значение моды по формуле:

, где  - нижняя граница модального интервала, i – величина этого интервала, , ,  - частоты модального, предшествующего ему и следующего за ним интервалов.

Для последней таблицы (данные о выработке рабочих токарей):

Медиана (вид процентиля), который занимает серединное положение в ряду распределения. Медиана определяется по формуле:

, где  - нижняя граница интервала, содержащего медиану (интервал определяется по накопленной частоте, первой превышающей 50% суммы частот (в дальнейшем для квартилей, децилей – 25%, 75%, 0,1%, 0,2% и т.д.)), i – величина этого интервала,  - номер медианы,  - накопленная частота интервала, предшествующего медиане,  - частота медианного интервала.

Поскольку медиана разновидность процентиля то данная формула носит универсальный характер, она может применяться для определения квартилей (Q) и децилей (d).

Квартили (четверти) отсекают от совокупности соответственно 25%, 50% и 75%.

Децили отсекают от совокупности соответственно 10%, 20%, 30% и т.д.

На первом этапе определяется номер процентиля по формуле:

 - для ряда четным числом единиц;

 - с нечетным числом единиц.

 - номер процентиля (порядковый),  - индекс процентиля (выражается десятичной дробью) (), N – численность совокупности.

Расчет моды и процентилей

на примере группировки магазинов по сумме товарооборота.

Группы магазинов

с торговой площадью,

кв. м

Число

магазинов,

Накопленная

частота,

До 100 6 6
100-200 12 18
200-300 27 45
300-400 13 58
400-500 8 66
Свыше 500 5 71
Итого 71

Накопленная частота – это сумма частот данного и всех предшествующих ему интервалов.

Четверть всех магазинов имеет площадь менее 200 кв. метров, а остальные 75% более 200 кв. метров.

Три четверти магазинов имеют торговые площади не превышающие 369,2 кв. метров, остальные больше.

Показатели вариации.

1.   Понятие вариации и роль ее изучения в статистических исследованиях.

2.   Измерители вариации.

3.   Прямой способ расчета показателей вариации.

4.   Свойства дисперсии и среднего квадратического отклонения.

5.   Упрощенный способ расчета дисперсии и средне квадратического отклонения.

6.   Относительные показатели вариации.

7.   Стандартизация данных.

8.   Моменты распределения.

9.   Показатели асимметрии и эксцесса.

10.         Средняя арифметическая и дисперсия альтернативного признака.

1. Понятие вариации и роль ее изучения в статистических исследованиях.

Вариация – это колеблемость значений признака у отдельных единиц совокупности.

Наличию вариации обязана своим появлением статистика. Большинство статистических закономерностей проявляется через вариацию. Изучая вариацию значений признака в сочетании с его частотными характеристиками, мы обнаруживаем закономерности распределения (например: население по возрасту, студентов по уровню оценок).

Рассматривая вариацию одного признака параллельно с изменением другого, мы обнаруживаем взаимосвязи между этими признаками или их отсутствие (например: зависимость между торговой площадью и товарооборотом).

Вариации в статистике проявляются двояко, либо через изменения значений признака у отдельных единиц совокупности, либо через наличие или отсутствие изучаемого признака у отдельных единиц совокупности.

Изучение вариации в статистике имеет как самостоятельную цель, так и является промежуточным этапом более сложных статистических исследований.


Информация о работе «Статистика»
Раздел: Статистика
Количество знаков с пробелами: 128810
Количество таблиц: 46
Количество изображений: 0

Похожие работы

Скачать
59066
6
49

... Доказать: По определению второй смешанной производной. Найдем по двумерной плотности одномерные плотности случайных величин X и Y. Т.к. полученное равенство верно для всех х, то подинтегральные выражение аналогично В математической теории вероятности вводится как базовая формула (1) ибо предлагается, что плотность вероятности как аналитическая функция может не существовать. Но т.к. в нашем ...

Скачать
15032
1
0

... распределения генеральной совокупности F(x) и – эмпирической функция распределения Fn(x) , построенной по выборке х1,…,хn, называется функция. Теорема. Если F(x) непрерывна, то распределения статистики Колмогорова Dn не зависит от F(x). Условные математические ожидания и условные распределения. Св-ва условных мат. ожиданий. Аналоги формул полной вероятности и формулы Байеса для мат. ожиданий ГММЕ ...

Скачать
61563
0
5

... дает возможность статистического моделирования, происходящих в населении процессов. Потребность в моделировании возникает в случае невозможности исследования самого объекта. Наибольшее число моделей, применяемых в статистике населения, разработано для характеристики его динамики. Среди них выделяются экспоненциальные и логистические. Особое значение в прогнозе населения на будущие периоды имеют ...

Скачать
46528
0
0

... на задний план традиционными постановками. Несколько лет назад при описании современного этапа развития статистических методов нами были выделены [29] пять актуальных направлений, в которых развивается современная прикладная статистика, т.е. пять "точек роста": непараметрика, робастность, бутстреп, интервальная статистика, статистика объектов нечисловой природы. Обсудим их. 5. ...

0 комментариев


Наверх