Множественная корреляция и регрессия

Статистика
Классификация статистических показателей Критический момент – момент времени, по состоянию на который регистрируются данные. Устанавливается при исследовании динамично изменяющегося объекта Виды статистических группировок Частотные характеристики рядов распределения Средняя арифметическая величина и ее расчет прямым способом Степенные средние Измерители вариации Упрощенный способ расчета дисперсии и средне квадратического отклонения Моменты распределения Ошибка выборки Малая выборка Распространение результатов выборочного распределения на генеральную совокупность Способ моментных наблюдений Классификация методов исследования взаимосвязей Парная регрессия Множественная корреляция и регрессия Обеспечение сопоставимости рядов динамики Изучение основной тенденции развития, социально-экономического развития во времени Корреляция в рядах динамики Сводные индексы Средние индексы
128810
знаков
46
таблиц
0
изображений

5.   Множественная корреляция и регрессия.

Применяется для изучения влияния двух и более факторов на результативный признак. Процесс исследования включает несколько этапов.

Сначала проводится выбор формы уравнения взаимосвязи, чаще всего выбирается n-мерная линейная формула:

, так как легче считать и интерпретировать полученный результат.

Поскольку расчеты важны и трудоемки, важнейшее значение имеет отбор факторов для включения в регрессионную модель. На основе качественного анализа необходимо отбирать наиболее существенные факторы. На этапе отбора факторов, рассчитывается так же единичная матрица парных коэффициентов корреляции между признаками факторов, отобранных для включения в уравнение регрессии.

1
1
1
1

В уравнение регрессии не включаются оба или хотя бы один из тесно взаимосвязанных между собой факторов, коэффициент корреляции равен или превышает величину 0,8, это делается, чтобы избежать явления мультиколлинеарности, искажающего сущность исследуемого процесса в регрессионной модели.

После подстановки факторов в уравнение, проводятся расчеты его параметров по методу наименьших квадратов, и полученные результаты оцениваются на вероятностную надежность, путем сравнения каждого из параметров неизвестного с величиной соответствующей ошибке выборки. Ненадежные параметры исключаются из уравнений.

Все ненадежные параметры исключаются из уравнения регрессии, и расчеты повторяются до тех пор, пока все оставшиеся параметры или коэффициенты при неизвестных не будут надежны. Такой метод называется пошаговой регрессией. Затем рассчитывается множественный коэффициент детерминации.

Ряды динамики.

1.   Понятие ряда динамики и классификация динамических рядов.

2.   Обеспечение сопоставимости рядов динамики.

3.   Определение среднего уровня временного ряда.

4.   Система статистических показателей динамики.

5.   Изучение основной тенденции развития, социально-экономического развития во времени.

6.   Исследование периодических колебаний во времени.

7.   Корреляционная зависимость в рядах динамики.

8.   Статистические методы прогнозирования.

1.   Понятие ряда динамики и классификация динамических рядов.

Ряд динамики или временной ряд – это последовательность чисел, характеризующих развитие явления во времени.

Ряд динамики – это совокупность двух взаимосвязанных элементов:

-   Уровни ряда;

-   Показатели времени, к которым они относятся.

Уровень ряда – количественная оценка изучаемого явления (абсолютные, относительные, средние величины). В зависимости от показателя времени выделяют:

-   Моментные;

-   Интервальные ряды динамики.

Моментные динамические ряды характеризуют уровень явления по состоянию на определенный момент времени. Уровни моментных динамических рядов не следует суммировать, так как каждый последующих уровень условно или фактически включает в себя предыдущий.

Интервальные динамические ряды отражают масштабы явления за определенные периоды времени (дни, пятидневки, декады, месяцы, кварталы и т.д.) - товарооборот, издержки, доходы и т.д. Показатели интервального ряда можно суммировать. Такая операция называется укрупнением временных интервалов.

Разновидностью интервальных рядов являются ряды динамики с нарастающими итогами. Они применяются для оценки хода выполнения запланированных показателей и текущего, сравнение результатов деятельности разных хозяйственных субъектов. Каждый уровень такого ряда – это сумма значений анализируемого показателя за все предшествующие периоды его регистрации.

Пример: показатели динамики выполнения квартального плана коммерческого банка по доходам от реализации услуг.

Месяцы Сумма доходов от услуг, тыс.руб.

Выполнение квартального

плана в %

За месяц С начала года
Январь 11,5 11,5 28,75
Февраль 10,8 22,3 55,75
Март 19,1 41,4 103,5

План за первый квартал установлен в сумме 40 тыс. руб.

Статистическое исследование временных рядов предусматривает:

1)   Измерение интенсивности развития временного ряда;

2)   Определение общей тенденции изменений явлений во времени;

3)   Анализ причинно-следственной зависимости в рядах динамики;

4)   Исследование периодических (циклических и сезонных) колебаний;

5)   Прогнозирование развития динамических рядов.


Информация о работе «Статистика»
Раздел: Статистика
Количество знаков с пробелами: 128810
Количество таблиц: 46
Количество изображений: 0

Похожие работы

Скачать
59066
6
49

... Доказать: По определению второй смешанной производной. Найдем по двумерной плотности одномерные плотности случайных величин X и Y. Т.к. полученное равенство верно для всех х, то подинтегральные выражение аналогично В математической теории вероятности вводится как базовая формула (1) ибо предлагается, что плотность вероятности как аналитическая функция может не существовать. Но т.к. в нашем ...

Скачать
15032
1
0

... распределения генеральной совокупности F(x) и – эмпирической функция распределения Fn(x) , построенной по выборке х1,…,хn, называется функция. Теорема. Если F(x) непрерывна, то распределения статистики Колмогорова Dn не зависит от F(x). Условные математические ожидания и условные распределения. Св-ва условных мат. ожиданий. Аналоги формул полной вероятности и формулы Байеса для мат. ожиданий ГММЕ ...

Скачать
61563
0
5

... дает возможность статистического моделирования, происходящих в населении процессов. Потребность в моделировании возникает в случае невозможности исследования самого объекта. Наибольшее число моделей, применяемых в статистике населения, разработано для характеристики его динамики. Среди них выделяются экспоненциальные и логистические. Особое значение в прогнозе населения на будущие периоды имеют ...

Скачать
46528
0
0

... на задний план традиционными постановками. Несколько лет назад при описании современного этапа развития статистических методов нами были выделены [29] пять актуальных направлений, в которых развивается современная прикладная статистика, т.е. пять "точек роста": непараметрика, робастность, бутстреп, интервальная статистика, статистика объектов нечисловой природы. Обсудим их. 5. ...

0 комментариев


Наверх