Изучение основной тенденции развития, социально-экономического развития во времени

Статистика
Классификация статистических показателей Критический момент – момент времени, по состоянию на который регистрируются данные. Устанавливается при исследовании динамично изменяющегося объекта Виды статистических группировок Частотные характеристики рядов распределения Средняя арифметическая величина и ее расчет прямым способом Степенные средние Измерители вариации Упрощенный способ расчета дисперсии и средне квадратического отклонения Моменты распределения Ошибка выборки Малая выборка Распространение результатов выборочного распределения на генеральную совокупность Способ моментных наблюдений Классификация методов исследования взаимосвязей Парная регрессия Множественная корреляция и регрессия Обеспечение сопоставимости рядов динамики Изучение основной тенденции развития, социально-экономического развития во времени Корреляция в рядах динамики Сводные индексы Средние индексы
128810
знаков
46
таблиц
0
изображений

5.   Изучение основной тенденции развития, социально-экономического развития во времени.

Одна из главных задач статистического исследования динамики – это определение общей тенденции развития динамического ряда во времени или тренда.

Тренд (фактор времени) рассматривается как совокупный результат действия множества различных причин, которые условно объединяются в одну причину. Считается, что линия тренда может быть выпуклой, вогнутой или прямой. Но она не должна иметь волнообразную форму, которую принято считать результатом циклического изменения социальных и экономических показателей.

Кроме того, тренд не должен менять направление на протяжении примерно 10 лет. Существуют различные способы выделения тренда, выбор которых определяется целью исследования и спецификой изучаемого явления:

-   Способы укрупнения интервала;

-   Скользящей средней;

-   Аналитического выравнивания.

Сущность любого из способов это сглаживание случайных единовременных колебаний для выявления общей тенденции развития.

Метод укрупнения интервалов – это суммирование уровней ряда за более короткие промежутки времени с целью замены их более крупными.

Способ скользящей средней предусматривает последовательное усреднение некоторого постоянного числа уровней (членов динамического ряда) по формуле простой средней арифметической. Число членов скользящей средней обычно прямо пропорционально численности и интенсивности колебаний уровней динамического ряда.

Аналитическое выравнивание – это набор уравнения прямой или кривой линии, адекватно выражающей общую тенденцию развития динамического ряда и расчет параметров этого уравнения чаще всего по методу наименьших квадратов. При выборе уравнения функции руководствуются спецификой изучаемого явления, а так же рядом формальных признаков. Например, если для развития явления характерно достаточно стабильные абсолютные, цепные приросты (то есть ), то выбирается уравнение линейного тренда: .

Если абсолютные цепные приросты с течением времени постепенно сокращаются, то для характеристики тренда применяется полулогарифмическая кривая: .

Если явление развивается с достаточно стабильными цепными темпами роста, то для характеристики тренда применяется показательная функция: .

Если примерно постоянны цепные темпы прироста (), то используется парабола второго порядка: .

Из множества разнообразных функций тренда с формально математической точки зрения наилучшей считается та, которая наименее удалена от эмпирических уровней ряда: .

6.   Исследование периодических колебаний во времени.

При изучении динамики явлений выделяют обычно четыре группы причин, обуславливающих размер и характер изменения уровней ряда динамики.

- случайная компонента;
- сезонная компонента;
- циклическая составляющая;
- тренд.

Логика статистического исследования динамического ряда состоит в последовательном определении и наклонении отдельных составных частей ( - аддитивная модель).

Однако на практике чаще применяется исключение факторов не методом разностей, а методом соотношений ().

Это позволяет при последовательном проведении анализа выражать полученные на каждом этапе результаты в сопоставимом масштабе. То есть мы заменяем аддитивную модель на мультипликативную.

Если трендовая составляющая определяется по одной из рассмотренных вами функций, то циклическая составляющая рассчитывается обычно по синусо-косинусоидальной функции (гармонике Фурье): , причем величина k – это целое число, которое устанавливается прямо пропорционально интенсивности циклических колебаний. После определения циклической составляющей, расчет которой в условиях развивающейся рыночной экономики имеет важное значение, определяется сезонная компонента.

Сезонное колебание – это повторяющиеся устойчивые внутригодовые колебания. Они обусловлены природно-климатическими и другими факторами, определяющими неравномерность производства и потребления во времени.

Знание сезонных колебаний позволяет осуществить рациональное внутригодовое и внутримесячное планирование. Избежать ненужных потерь и использовать все имеющиеся возможности. В большинстве случаев статистическое исследование рядов динамики за короткие промежутки времени сводятся к изучению сезонных колебаний. Индикатором сезонных колебаний является индекс сезонности, который определяется по формуле:

, где  и - фактическое и выровненное значение уровня динамического ряда в i-ый момент времени или в i-ый периоде времени.

В зависимости от способа выравнивания исходных данных различают методы расчета индекса сезонности по простой средней, скользящей средней и аналитического выравнивания.

Пример: расчет индексов сезонности товарооборота по методу простой средней.

Кварталы

Товарооборот по годам,

тыс. руб.

Среднеквартальные

уровни товарооборота

Индексы

сезонности, %

1998 1999 2000
1 11561 11919 12446 11975 102,9
2 8786 8832 9484 9034 77,6
3 10764 11323 11712 11266 96,8
4 13993 14176 14624 14264 122,6
Итого 45104 46250 48266

Определим среднеквартальный уровень:

Среднеквартальный уровень за все годы:

Индексы сезонности:

Индексы сезонности показывают, что в 1 квартале товаров продается примерно на 2,9% больше среднеквартального уровня. Во втором на 22,3% меньше. В третьем на 3,2 меньше, а в четвертом на 22,6% больше среднеквартального уровня. Полученные показатели целесообразно использовать для внутриквартального планирования годового товарооборота.

Метод расчета индексов сезонности по простой средней прост в расчете и достаточно точен в случаях, когда анализируемые явления не имеют устойчивой интенсивной тенденции роста или падения во времени. В противном случае применяют расчет индекса сезонности по скользящей средней или с помощью аналитического выравнивания.

Расчет индекса сезонности по методу скользящей средней (четырехчленной).

См. таблицу

Далее определяется индекс сезонности для каждого квартала. Полученные индексы сезонности для каждого года и квартала используются для расчета средних индексов для каждого квартала по методу простой средней:

 

Определение индекса сезонности методом аналитического выравнивания. В качестве тенденции развития товарооборота выбираем линейный тренд вида , для расчета параметров тренда используется система уравнений:

Поскольку, показатель времени t представляет собой ряд числе, каждое из которых на 1 больше предыдущего, то система уравнений может быть упрощена искусственно, подобрав ряд t таким образом, чтобы сумма t равнялась 0 (). В этом случае имеем

В нашем примере (см. таблицу дальше):

Годы Кварталы

Товарооборот,

 тыс. руб.

Условные

номера

кварталов

Индексы

сезонности, %

1998 1 11561 -11 -127171 10624 108,8
2 8786 -9 -79074 10807 81,3
3 10764 -7 -75348 10991 97,9
4 13993 -5 -69965 11175 125,2
1999 1 11919 -3 -35757 11359 104,9
2 8832 -1 -8832 11543 76,5
3 11323 1 11323 11727 96,6
4 14176 3 42528 11911 119,0
2000 1 12446 5 62230 12095 102,9
2 9484 7 66388 12279 77,2
3 11712 9 105408 12463 94,0
4 14624 11 160864 12646 115,6
139620 52594

Подставляя в уравнение условные значения t, получим теоретические значения уровней ряда динамики ( ).

Далее по простой средней рассчитываем средние индексы сезонности:

Полученные индексы сезонности можно изобразить на графике в виде сезонной волны.


Информация о работе «Статистика»
Раздел: Статистика
Количество знаков с пробелами: 128810
Количество таблиц: 46
Количество изображений: 0

Похожие работы

Скачать
59066
6
49

... Доказать: По определению второй смешанной производной. Найдем по двумерной плотности одномерные плотности случайных величин X и Y. Т.к. полученное равенство верно для всех х, то подинтегральные выражение аналогично В математической теории вероятности вводится как базовая формула (1) ибо предлагается, что плотность вероятности как аналитическая функция может не существовать. Но т.к. в нашем ...

Скачать
15032
1
0

... распределения генеральной совокупности F(x) и – эмпирической функция распределения Fn(x) , построенной по выборке х1,…,хn, называется функция. Теорема. Если F(x) непрерывна, то распределения статистики Колмогорова Dn не зависит от F(x). Условные математические ожидания и условные распределения. Св-ва условных мат. ожиданий. Аналоги формул полной вероятности и формулы Байеса для мат. ожиданий ГММЕ ...

Скачать
61563
0
5

... дает возможность статистического моделирования, происходящих в населении процессов. Потребность в моделировании возникает в случае невозможности исследования самого объекта. Наибольшее число моделей, применяемых в статистике населения, разработано для характеристики его динамики. Среди них выделяются экспоненциальные и логистические. Особое значение в прогнозе населения на будущие периоды имеют ...

Скачать
46528
0
0

... на задний план традиционными постановками. Несколько лет назад при описании современного этапа развития статистических методов нами были выделены [29] пять актуальных направлений, в которых развивается современная прикладная статистика, т.е. пять "точек роста": непараметрика, робастность, бутстреп, интервальная статистика, статистика объектов нечисловой природы. Обсудим их. 5. ...

0 комментариев


Наверх