Корреляция в рядах динамики

Статистика
Классификация статистических показателей Критический момент – момент времени, по состоянию на который регистрируются данные. Устанавливается при исследовании динамично изменяющегося объекта Виды статистических группировок Частотные характеристики рядов распределения Средняя арифметическая величина и ее расчет прямым способом Степенные средние Измерители вариации Упрощенный способ расчета дисперсии и средне квадратического отклонения Моменты распределения Ошибка выборки Малая выборка Распространение результатов выборочного распределения на генеральную совокупность Способ моментных наблюдений Классификация методов исследования взаимосвязей Парная регрессия Множественная корреляция и регрессия Обеспечение сопоставимости рядов динамики Изучение основной тенденции развития, социально-экономического развития во времени Корреляция в рядах динамики Сводные индексы Средние индексы
128810
знаков
46
таблиц
0
изображений

7.   Корреляция в рядах динамики.

При анализе рядов динамики возникает необходимость исследования взаимосвязи между признаками. Иногда исследовать взаимосвязи можно только в рядах динамики. Это в первую очередь касается многофакторного корреляционного анализа, когда число единиц совокупности должно не менее чем в восемь раз превышать число факторов, включенных в регрессионную модель.

Поэтому применяется метод «заводо-лет», когда анализу подвергаются динамические ряды. Однако непосредственное определение тесноты связи при этом методе возможно только при отсутствии автокорреляции, то есть зависимости последующих уровней ряда от предыдущих. Вследствие автокорреляции наличие синхронных колебаний (тенденций) развития уровней двух показателей может быть истолковано как наличие связи между ними.

 Поэтому исследование рядов динамики всегда начинается с определения коэффициента автокорреляции:

Рассчитанные коэффициенты автокорреляции оцениваются на вероятностную надежность с помощью критерия t –Стьюдента. Если фактическая величина критерия t больше табличного, то автокорреляция имеет место и расчет показателей тесноты связи можно осуществить по одному из специальных способов:

1)   Коррелирование отклонений от трендов;

2)   Коррелирование абсолютных разностей.

Коэффициент корреляции отклонений от трендов рассчитывается по формуле:

, где - соответственно теоретические значения уравнений факторного и результативного признаков, соответственно рассчитанные с помощью уравнений линейных трендов вида:

, где x, y – соответственно фактические значения уравнений факторного и результативного признаков.

Для коррелирования абсолютных разностей цепные абсолютные приросты по факторному и результативному признакам по формулам:

А коэффициент корреляции: .

Некоторые социально-экономические явления или факторы воздействуют друг на друга не сразу, а с некоторой задержкой во времени, с временным лагом (запаздыванием). Например, инвестиции в проект дают эффект по истечении срока их освоения.

Для определения тесноты связи подобных явлений временные ряды факторного и результативного признаков сдвигаются один относительно другого на величину временного лага.

8.   Статистические методы прогнозирования.

Результаты анализа временных рядов используются для прогнозирования путем экстраполяции, то есть нахождения уравнений за пределами временного ряда.

Существуют краткосрочное, среднесрочное и долгосрочное прогнозирование. Понятие срочности прогнозирования связано со спецификой изучаемого явления. Для прогнозирования валютных курсов долгосрочным является прогноз в пределах 1 года, в то время как развитие экономики осуществляется в долгосрочном плане на 5 и более лет. Краткосрочное – до 1 года, среднесрочное – до 3 лет.

В зависимости от сроков прогнозирования и особенности развития явления в прогнозный период используют разные методики. Если для явления (ряда динамики) были характерны достаточно стабильные цепные приросты (абсолютные), то прогнозирование осуществляется по формуле:

, где - конечный уровень динамического ряда, - срок прогнозирования, - среднегодовой абсолютный прирост.

Если для явления были характерны достаточно стабильные цепные темпы роста, то прогнозирование осуществляется по формуле:

 , где - средний темп роста.

Наиболее точным и сложным является прогнозирование с использованием различных уравнений трендов (см. пункт 5).

Индексы.

1.   Индексный метод. Его роль в анализе социально-экономических явлений.

2.   Индивидуальные индексы.

3.   Сводные индексы.

4.   Средние индексы.

5.   Системы индексов. Анализ факторов развития социально-экономических явлений индексным методом.

1.   Индексный метод. Его роль в анализе социально-экономических явлений.

Индекс (в переводе с латинского – указатель). В статистике индекс трактуется как относительный показатель, характеризующий изменение явления во времени, пространстве или по сравнению с планом. Поскольку индекс относительная величина, наименования индексов созвучны с наименованием относительных величин.

Существуют индексы динамики, выполнения плана, структурных сдвигов, сравнения.

Индексный метод наиболее распространенный метод анализа социально-экономических явлений. Существуют индексы урожайности, заработной платы и т.д. Тем не менее, у индексного метода имеется существенный недостаток, он адекватно измеряет только функциональные причинно-следственные зависимости, которые в экономике не преобладают. Построение индексов требует глубоких знаний в специфике изучаемого явления.

2.   Индивидуальные индексы.

Индивидуальные индексы – самые не сложные из индексов. За рубежом их нередко называют «simple index number» (простейший индексный указатель). Это механический подход к названию, правильнее их называть индивидуальными индексами, так как они характеризуют динамику одного однородного объекта (индивидуума).

Пример: индекс цен , где - цена какого-либо товара в отчетном и базисном периоде.

Существуют индивидуальные индексы:

·     Физического объема , динамики количества проданного или произведенного товара;

·     Производительности труда ;

·     Трудоемкости .

Если индексы определяются за ряд последовательных промежутков времени, они называются цепными или базисными.

Основное достоинство индивидуальных индексов простота, недостаток – ограниченная сфера применения (только для одного однородного явления).


Информация о работе «Статистика»
Раздел: Статистика
Количество знаков с пробелами: 128810
Количество таблиц: 46
Количество изображений: 0

Похожие работы

Скачать
59066
6
49

... Доказать: По определению второй смешанной производной. Найдем по двумерной плотности одномерные плотности случайных величин X и Y. Т.к. полученное равенство верно для всех х, то подинтегральные выражение аналогично В математической теории вероятности вводится как базовая формула (1) ибо предлагается, что плотность вероятности как аналитическая функция может не существовать. Но т.к. в нашем ...

Скачать
15032
1
0

... распределения генеральной совокупности F(x) и – эмпирической функция распределения Fn(x) , построенной по выборке х1,…,хn, называется функция. Теорема. Если F(x) непрерывна, то распределения статистики Колмогорова Dn не зависит от F(x). Условные математические ожидания и условные распределения. Св-ва условных мат. ожиданий. Аналоги формул полной вероятности и формулы Байеса для мат. ожиданий ГММЕ ...

Скачать
61563
0
5

... дает возможность статистического моделирования, происходящих в населении процессов. Потребность в моделировании возникает в случае невозможности исследования самого объекта. Наибольшее число моделей, применяемых в статистике населения, разработано для характеристики его динамики. Среди них выделяются экспоненциальные и логистические. Особое значение в прогнозе населения на будущие периоды имеют ...

Скачать
46528
0
0

... на задний план традиционными постановками. Несколько лет назад при описании современного этапа развития статистических методов нами были выделены [29] пять актуальных направлений, в которых развивается современная прикладная статистика, т.е. пять "точек роста": непараметрика, робастность, бутстреп, интервальная статистика, статистика объектов нечисловой природы. Обсудим их. 5. ...

0 комментариев


Наверх