Теорема о среднем значении для определенного интеграла

56527
знаков
0
таблиц
0
изображений

21. Теорема о среднем значении для определенного интеграла.

Если функция y=f(x) непрерывна на отрезке [a,b], то найдется такая точка ξÎ(a,b), что справедливо равенство:


Теорема верна и при b<a.

Доказательство: Проведем его для случая a<b. Пусть m и M - наименьшее и наибольшее значение функции f(x) на отрезке [a,b] (для непревной функции они существуют по теореме Вейерштраса). По следствию из теоремы (Если на отрезке [a,b] функция f(x) интегрируема и удовлетворяет неравенству m£f(x)£M. То выполняются неравенства: (на этом следствие из теоремы закончилось, но к нему относится ниже написанное неравенство))


можно записать


Поделив это неравенство на полжительное число b-a, получим:


Непрерывная функция f(x) принимает всякое значение промежуточное между наименьшим m и наибольшим M значениями. Поэтому существует такое число x(a<x<b), что


Чтд.

22. Классы интегрируемых функций. Функция Дирихле.

интегрируемость не является свойством, присущим всем функциям. В этом убеждает следующий пример. Рассмотрим функцию f(x), называемой функцией Дирихле:

 

Сделаем произвольное разбиение R отрезка [a,b]. На любом частичном отрезке [xi, xi+1] найдетсяи как рациональная точка xi. Так, и иррациональная точка hi.Составим две интегральные суммы:sR и


Пусть


При lR →0 предел интегральных сумм вида :sR равен b-a, в то время, как для

равен нулю. Итак, для интегральных сумм разного вида пределы получаются различные, зависящие от выбора точек на отрезках [xi, xi+1]. Это означает, что функция Дирихле не интегрируемая.

З класса функции:

1.     Функции непрерывные на отрезке [a,b].

2.     Функции имеющие не более конечного числа разрывов 1-го рода на отрезке [a,b]. (их называют кусочно-непрерывными)

3.     Функции монотонные на отрезке [a,b] (у функции этого класса число разрывов может быть бесконечным).

23. Интеграл с переменным верхним пределом. Теорема о его непрерывности.

Теорма: Если функция f(x) интегрируема на отрезке [a,b], то функция


непрерывна на этом отрезке.

Доказательство: Дадим числу х приращение ∆х так, чтобы х+∆хÎ[a,b]. Для наглядности изобразим на числовой оси один из возможных вариантов расположения точек:



a x0 x х+∆х b



Получим:

По теореме (Если функция y=f(x) интегрируема на отрезке, то интегрируема и абсолютная величина |f(x)|, причем


…(на этом теорема закончилась, но неравенство относится к ней.) и следствию из теоремы (Если на отрезке [a,b] функция f(x) интегрируема и удовлетворяет неравенству m£f(x)£M. То выполняются неравенства:

(на этом следствие из теоремы закончилось)

получаем:


Отсюда следует, что при ∆х→0 будет ∆F→0. Это доказывает непрерывность функции F(x). Отметим, что для подынтегральной функции f(x) точка х может быть точкой разрыва.


Информация о работе «Шпоры по математическому анализу»
Раздел: Математика
Количество знаков с пробелами: 56527
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
369617
0
0

... нельзя быть аморальным политиком. Средство борьбы против этого --- гласность. Ход исторического процесса --- антагонизм. b 10---------- 1. Теоретическое и обыденное сознание. Знание и мнение в древнегреческой философии. Акцент делать на этом вопросе. Общественное сознание - духовная, идеологическая жизнь общества, его мировозрение. Общественное сознание формируется и развивается вместе ...

Скачать
161367
0
0

... . — С 73-77. Лосев А. Ф. Типы античного мышления // Античность как тип культуры. — М., 1988. — С. 78-104. Луканин Р. К. Из истории античного опыта и эксперимента // Филос. науки. — 1991. — № 11. — С. 23-36. Луканин Р. К. Категории Аристотеля в истолковании западноевропейских философов // Путем Октября. — Махачкала, 1990. — С. 84-103. Луканин Р. К. "Среднее"— специфическое понятие аттической ...

Скачать
196174
7
19

... то целесообразно разработать комплекс заданий по развитию интеллектуальных способностей дошкольников и внедрить его в математический блок программы «Радуга». 2.2 Опытно-поисковые исследования по развитию интеллектуальных способностей средствами математики Для проверки выдвинутой гипотезы провели опытно-поисковые исследования. Опытно-поисковые исследования состояли из трех этапов. На первом ...

Скачать
333055
3
8

... руководителя. Большое внимание следует уделять мотивации управленческого труда.    56. Организационно-распорядительные методы управления (Или административные). С их помощью осуществляются регулирующие функции гос-ва. Основаны на исполнении обязательных предписаний и рекомендаций, позволяют оперативно воздействовать на ход событий в процессе упр-я, ср-во волевого и конкретного воздействия ( ...

0 комментариев


Наверх