4.2.1. Изменение параметров термодеформационных процессов при традиционных способах точечной сварки
Из всех параметров процесса точечной сварки к настоящему времени экспериментально измерено с достаточной степенью надежности только изменение в процессе формирования соединения диаметра уплотняющего пояска, размеров ядра расплавленного металла и температуры в контактах электрод–деталь. Сведения об остальных в большинстве носят предположительный характер.
Решение уравнения (3.11) термодеформационного равновесия процесса формирования соединения для традиционных способов сварки впервые (алгоритм показан на рис. 4.1) позволило рассчитать изменение в процессе КТС параметров основных термодеформационных процессов, определить их взаимовлияние и влияние на устойчивость процесса сварки. При этом установлено следующее (рис. 4.5) [203…206, 214…216, 218].
В процессе формирования точечного сварного соединения на стадии нагрева во время tСВ действия импульса сварочного тока происходит уменьшение среднего давления РСРt в контуре контакта деталь–деталь, сопровождаемое его пластическим течением и непрерывным увеличением площади (диаметра dПt ) свариваемого контакта (рис. 4.5, а). Это является следствием того, что среднее значение напряжений в контуре уплотняющего пояска σСРt, а после начала плавления металла в свариваемом контакте и давление РЯt в ядре, уменьшаются по величине. Причем, до начала плавления металла средние значения давления РСРt и напряжений σСРt в контакте деталь–деталь совпадают по величине.
Основными факторами, определяющими такое изменение напряжений в контуре уплотняющего пояска σСРt и давление РЯt в ядре, являются разупрочнение металла в зоне сварки, которое проявляется в уменьшении его сопротивления пластической деформации σДt, а также уменьшение ширины уплотняющего пояска bПt, равной bПt = (dПt – dЯt)/2 (см. зависимости (3.51) и (3.59)), из-за более быстрого увеличения диаметра ядра dЯt по сравнению с увеличением диаметра dПt уплотняющего пояска.
Основным фактором, определяющим уменьшение сопротивления пластической деформации металла в зоне сварки σДt является его разупрочнение вследствие увеличения температуры ТДt (рис. 4.5, а), которое по своему влиянию не только полностью компенсирует, но и превосходит упрочняющее действие монотонно увеличивающейся в процессе формирования соединения степени пластической деформации. Кроме того, уменьшению в процессе КТС сопротивления пластической деформации металла в зоне сварки σДt способствует и уменьшение при сварке скорости пластической деформации ut.
Монотонное изменение в процессе КТС напряжений в контуре уплотняющего пояска σСРt и давления РЯt в расплавленного металла ядре не приводит к нарушению термодеформационного равновесия в площади свариваемого контакта. Оно сопровождается лишь изменением в его площади характера силового взаимодействия деталей (рис. 4.5, в).
Так, в приведенном на рис. 4.5 примере, детали в месте сварки собраны с зазором δ = 0,5 мм. Поэтому в соответствии с уравнением (3.11) усилие сжатия в площади свариваемого контакта FCt (3.21) меньше усилия сжатия деталей электродами FЭt, на величину FДt (см. зависимость (2.5)), затраченную на деформацию деталей при их сближении до соприкосновения поверхностей. В течение все процесса КТС усилие сжатия в свариваемом контакте FCt меньше усилия сжатия деталей электродами FЭt на величину FДt и в данном случае остается неизменным.
До начала плавления металла все усилие FCt сжатия в свариваемом контакте уравновешивается металлом, находящимся в твёрдой фазе. В этом случае все усилие в площади свариваемого контакта FCt уравновешивается напряжениями, интегральная сумма которых в площади уплотняющего пояска равна усилию FПt, т. е. в этот период согласно зависимостям (3.10) и (3.21) FCt = FПt.
В период после момента tНП начала плавления металла в свариваемом контакте до окончания импульса тока (при tНП < t ≤ tСВ) часть усилия сжатия в свариваемом контакте FCt уравновешивается давлением РЯt расплавленного металла в ядре, которое по его площади развивает усилие FЯt (3.9), а часть — напряжениями в уплотняющем пояске, которые по его площади составляют усилие FПt (3.10). При этом, несмотря на уменьшение давления в ядре РЯt в процессе его формирования, усилие FЯt в его площади увеличивается, что обусловлено более быстрым увеличение площади ядра по сравнению с уменьшением в нем давления. Поэтому по мере роста ядра происходит перераспределение усилий сжатия в свариваемом контакте при неизменной величине FCt: доля усилия FCt, уравновешиваемая в его площади усилием FЯt, увеличивается, а доля, уравновешиваемая в площади уплотняющего пояска усилием FПt, уменьшается на величину FЯt.
Такое взаимосвязанное изменение параметров термодеформационных процессов, протекающих в зоне сварки, и параметров силового взаимодействия деталей в площади свариваемого контакта обеспечивает устойчивое формирование соединения в условиях их непрерывного изменения при КТС.
... вредных примесей металла. В заключение раздела отметим, что дуговой разряд, открытый В.Б. Петровым в 1802 г., не исчерпал еще всех своих возможностей и областей применения, включая и область сварочного производства. 3.2 Электрошлаковая сварка Разработка этого принципиально нового процесса была осуществлена в начале 50-х годов прошлого века сотрудниками ИЭС им. Е.О. Патона АН УССР во главе ...
... измерения энергии должна находится в пределах ±(0,1-2,5)%. 4.4 Зависимость погрешности дозирования от состава технических средств комплексов дозирования Поскольку в электротехнические комплексы дозирования помимо рассмотренных выше устройств цифрового дозирования количества электричества и электрической энергии входят также устройства коммутации и датчики тока и напряжения, то необходимо ...
... ? 25. В чем сущность биохимических, фотохимических, радиационно-химических, плазмохимических процессов? Указать области их применения. 26. Какие основные группы физических процессов используют в системах технологий? 27. Дать определение машиностроению как комплексной области. Какова структура машиностроительного предприятия? 28. Раскрыть сущность понятий «изделие», «деталь», «сборочная единица ...
... - дальнейшее развитие, совершенствование и разработка новых технологических методов обработки заготовок деталей машин, применение новых конструкционных материалов и повышение качества обработки деталей машин. Наряду с обработкой резанием применяют методы обработки пластическим деформированием, с использованием химической, электрической, световой, лучевой и других видов энергии. Классификация ...
0 комментариев