2.2.1. Формирование механических контактов
Реальные поверхности деталей всегда имеют микроскопические неровности (рис. 2.15), поскольку они образуются не только при механической обработке поверхностей [12, 13], но даже и при кристаллизационных [12] или рекристаллизационных [123] процессах в металлах. Эти неровности в технологии машиностроения характеризуют шероховатостью и волнистостью. Их параметры, включая и терминологию, регламентированы ГОСТами [124, 125].
Если бы поверхности деталей были идеально гладкими и плоскими, то контакты между ними существовали бы по всей площади сопрягаемых поверхностей. Эту площадь принято называть «номинальной площадью контакта» и обозначать Аа (рис. 2.16). Следовательно, при точечной сварке «номинальной площадью контакта» Аа является вся площадь нахлестки. Наличие на поверхностях реальных деталей шероховатости и волнистости приводит к тому, контакт между ними не будет сплошным. Лишь отдельные участки поверхностей воспринимают усилия сжатия. Сумма таких дискретных площадок контакта образует «фактическую площадь контакта», которую принято обозначать Аr. Единичные пятна фактического контакта располагаются неравномерно, отдельными областями. Эти области сосредоточения пятен фактических контактов, обведенные контурами, в сумме составляют «контурную площадь контакта», которую обозначают Ас. Тогда можно считать, что при контактной точечной сварке «контурной площадью контакта» Ас является вся площадь внутри контура уплотняющего пояска. Такая классификация площадей контактов общепринята в технологии машиностроения [126, 127] и сварки [4, 12, 13, 92, 128, 129].
При контактировании жестких тел величина контурной площади контакта определяется геометрическими характеристиками их поверхностей, в основном волнистостью, а также, хотя и в значительно меньшей мере, и шероховатостью [126, 127, 130...135]. При точечной сварке кроме волнистости и шероховатости на контурную площадь контактов оказывает влияние распределение нагрузки, которое зависит от площади (при плоской) или радиуса (при сферической) рабочих поверхностей электродов, и толщина свариваемых деталей вследствие относительно небольшой жесткости последних [4, 13,81, 92, 136].
В теории контактной точечной сварки наиболее известны две методики расчетного определения контурной площади контактов АС [10, 13]:
, (2.7)
, (2.8)
где FЭ — усилие сжатия электродов; σТ — предел текучести материала деталей; Аа — номинальная площадь контакта; Z — показатель степени, который учитывает нагрузку и сопротивление деформации металла деталей
или ;
здесь α — опытный коэффициент; Т — температура в контакте; σ — удельная нагрузка: ; ТПЛ — абсолютная температура плавления металла; σСД — сопротивление деформации металла в масштабе волнистости.
Значения контурной площади АС, рассчитанные по зависимости (2.7), значительно превышают экспериментальные значения, например, приведенные в работах [92, 128, 129]. Экспериментальные данные, а также теоретические исследования [81, 136] однозначно показывают, что при точечной сварке контурная площадь практически не зависит от площади нахлестки, то есть от номинальной площади контакта Аа. Поэтому возможность применения зависимости (2.8) для практических расчетов в условиях точечной сварки весьма проблематична. Кроме того, вычисления по зависимости (2.8) весьма трудоемки, так как могут быть произведены только методом итераций, поскольку искомая величина АС входит и в правую ее часть для определения величины удельной нагрузки σ.
Сведения же о фактической площади контактов при точечной сварке и механизме ее формирования весьма ограничены. Так, в работе [92] экспериментально установлено, что она составляет 1…25 % от контурной площади контакта. При этом отмечается, что в случае сжатия деталей электродами с плоской рабочей поверхностью пятна единичных микроконтактов распределяются почти равномерно по всей контурной площади. В случае же сжатия деталей электродами со сферической рабочей поверхностью плотность единичных контактов растет к ее периферии.
Для расчета фактической площади контакта Аr в работе [13] предложена зависимость, которая структурно аналогична зависимости (2.8)
, (2.9)
где: Х — показатель степени, равный
или ;
здесь β — опытный коэффициент; σΔ — давление, действующее в площади единичного микроконтакта; ТΔ — температура микровыступов в контакте; σСДΔ — сопротивление деформации металла в масштабе микровыступов.
Расчеты фактической площади контакта Аr по зависимости (2.9) затрудняются теми же обстоятельствами, что и расчет контурной площади по зависимости (2.8). Причем определение температуры и свойств металла в масштабе микровыступов весьма неопределенно.
При сварке деталей из алюминиевых и магниевых сплавов относительные деформации микрошероховатостей на их поверхности достигают 60…70 %. Причем их значения в контакте электрод–деталь в 1,3...1,4 раза больше, чем в контакте деталь–деталь [129]. Такой уровень микродеформаций в контактах электрод–деталь может приводить к схватыванию металлов детали и электрода (по механизму сварки давлением в твердой фазе [12, 137]) и такому нежелательному при точечной сварке явлению, как массоперенос металлов между поверхностями деталей и электродов [128].
... вредных примесей металла. В заключение раздела отметим, что дуговой разряд, открытый В.Б. Петровым в 1802 г., не исчерпал еще всех своих возможностей и областей применения, включая и область сварочного производства. 3.2 Электрошлаковая сварка Разработка этого принципиально нового процесса была осуществлена в начале 50-х годов прошлого века сотрудниками ИЭС им. Е.О. Патона АН УССР во главе ...
... измерения энергии должна находится в пределах ±(0,1-2,5)%. 4.4 Зависимость погрешности дозирования от состава технических средств комплексов дозирования Поскольку в электротехнические комплексы дозирования помимо рассмотренных выше устройств цифрового дозирования количества электричества и электрической энергии входят также устройства коммутации и датчики тока и напряжения, то необходимо ...
... ? 25. В чем сущность биохимических, фотохимических, радиационно-химических, плазмохимических процессов? Указать области их применения. 26. Какие основные группы физических процессов используют в системах технологий? 27. Дать определение машиностроению как комплексной области. Какова структура машиностроительного предприятия? 28. Раскрыть сущность понятий «изделие», «деталь», «сборочная единица ...
... - дальнейшее развитие, совершенствование и разработка новых технологических методов обработки заготовок деталей машин, применение новых конструкционных материалов и повышение качества обработки деталей машин. Наряду с обработкой резанием применяют методы обработки пластическим деформированием, с использованием химической, электрической, световой, лучевой и других видов энергии. Классификация ...
0 комментариев