3.1. Теоретические основы решения иррациональных неравенств
Если в любом иррациональном уравнении заменить знак равенства на один из знаков неравенства: >, , <, , то получим иррациональное неравенство. [19] Поэтому под иррациональным неравенством будем понимать неравенство, в котором неизвестные величины находятся под знаком корня. [16]
Способ решения таких неравенств состоит в преобразовании их к рациональным неравенствам путем возведения обеих частей неравенства в степень.
Чтобы избежать ошибок при решении иррациональных неравенств, следует рассматривать только те значения переменной, при которых все входящие в неравенство функции определены, то есть найти ОДЗ этого неравенства, а затем обоснованно осуществлять равносильный переход на всей ОДЗ или ее частях.
При решении иррациональных неравенств следует запомнить правило: при возведении обеих частей неравенства в нечетную степень всегда получается неравенство, равносильное данному неравенству. [16]
Но если при решении уравнений в результате возведения четную степень мы могли получить посторонние корни (которые, как правило легко проверить) и не могли потерять корни, то корни неравенства при бездумном возведении в четную степень могут одновременно и теряться, и приобретаться. [8]
Например, возведя в квадрат:
-верное неравенство , мы получим верное неравенство ;
-верное неравенство , мы получим неверное неравенство ;
-неверное неравенство , мы получим верное неравенство ;
-неверное неравенство , мы получим неверное неравенство .
Вы видите, что возможны все комбинации верных и неверных неравенств.
Однако верно основное используемое здесь утверждение: если обе части неравенства возводят в четную степень, то получится неравенство, равносильное исходному только в том случае, если обе части исходного неравенства неотрицательны. [16]
3.2. Методы решения иррациональных неравенств
3.2.1. Метод сведения к эквивалентной системе или совокупности рациональных неравенств
Основным методом решения иррациональных неравенств является сведение исходного неравенства к равносильной системе или совокупности систем рациональных неравенств. [17]
Наиболее простые иррациональные неравенства имеют вид:
1) или ;
2) или ;
3) или .
Иррациональное неравенство или равносильно системе неравенств
или . (1)
Первое неравенство в системе (1) является результатом возведения исходного неравенства в степень, второе неравенство представляет собой условие существования корня в исходном неравенстве, а третье неравенство системы выражает условие, при котором это неравенство можно возводить в квадрат.
Иррациональное неравенство или равносильно совокупности двух систем неравенств
или . (2)
Обратимся к первой системе схемы (2). Первое неравенство этой системы является результатом возведения исходного неравенства в квадрат, второе – условие, при котором это можно делать.
Вторая система схемы (2) соответствует случаю, когда правая часть отрицательна, и возводить в квадрат нельзя. Но в этом и нет необходимости: левая часть исходного неравенства – арифметический корень – неотрицательна при всех x, при которых она определена. Поэтому исходное неравенство выполняется при всех x, при которых существует левая часть. Первое неравенство второй системы и есть условие существования левой части.
Иррациональное неравенство или равносильно системе неравенств
или . (3)
Поскольку обе части исходного неравенства неотрицательны при всех x, при которых они определены, поэтому его можно возвести в квадрат. Первое неравенство в системе (3) является результатом возведения исходного неравенства в степень. Второе неравенство представляет собой условие существования корня в исходном неравенстве, понятно, что неравенство выполняется при этом автоматически.
Схемы (1)–(3) – наш основной инструмент при решении иррациональных неравенств, к ним сводится решение практически любой задачи. Разберем несколько примеров. [8]
Пример 1. Решить неравенство .
Решение. Заметим, что правая часто этого неравенства отрицательна, в то время как левая часть неотрицательна при всех значениях x, при которых она определена. Поэтому неравенство решений не имеет.
Ответ. Решений нет.
Пример 2. Решить неравенство .
Решение. Как и в предыдущем примере, заметим, что правая часть данного неравенства отрицательна, а левая часть исходного неравенства неотрицательна при всех значениях x, при которых она определена. Это означает, что левая часть больше правой части при всех значениях x, удовлетворяющих условию .
Ответ. .
Пример 3. Решить неравенство .
Решение. В соответствии со схемой (1) решения неравенств этого типа, запишем равносильную ему систему рациональных неравенств
Условие выполнено при всех x, и нет необходимости добавлять его к выписанной системе.
Ответ. .
Пример 4. Решить неравенство .
Решение. Это неравенство решается при помощи схемы (2). В данном случае , поэтому можно сразу записать неравенство, равносильное исходному
.
Ответ. .
Пример 5. Решить неравенство .
Решение. Это неравенство может быть решено при помощи схемы (1). Система, равносильная исходному неравенству, имеет вид
.
Ответ. .
Пример 6. Решить неравенство .
Решение. Данное неравенство можно решать с помощью схемы (2). Оно равносильно совокупности двух систем
Ответ. .
Пример 7. Решить неравенство .
Решение. Согласно схеме (3), данное неравенство равносильно системе
Ответ.
Рассмотрим решение иррациональных неравенств следующего вида
.
Поскольку , , то должны выполнятся условия , , (соответственно ). На множестве, где эти условия выполняются, данное неравенство равносильно неравенству
(соответственно неравенству ), которое сводится к разобранным выше типам неравенств. [4]
Пример 8. Решить неравенство .
Решение. Данное неравенство равносильно следующей системе неравенств:
Решение исходного неравенства является общей частью решений всех неравенств системы, то есть имеет вид .
Ответ. .
Теперь перейдем к решению более сложных задач, стараясь свести их решение к стандартным ситуациям – к простейшим неравенствам, рассмотренным выше. Приемы сведения во многом аналогичны приемам, применяемым при решении иррациональных уравнений.
Если в неравенстве встречаются два квадратных радикала, обычно приходится неравенство возводить в квадрат дважды, обеспечивая при этом необходимые для этой операции условия.
Пример 9. Решить неравенство .
Решение. Перенесем второй радикал в правую часть, чтобы обе части неравенства стали неотрицательными, и его можно было возвести в квадрат:
Мы пришли к простейшему стандартному неравенству, которое согласно схеме (1) равносильно системе:
Ответ. .
Замечание. При получении неравенства мы не выписывали допустимые значения неизвестного, так как там фигурировал , который существует при , но при этих значениях существует и .
Пример 10. Решить неравенство .
Решение. Начнем с отыскания допустимых значений неизвестного:
Заметим, что для избавления от радикала достаточно возвести данное неравенство в квадрат. Но для этого необходимо, чтобы обе части его были неотрицательны, что выполняется лишь при выполнении условия (так как все остальные выражения, входящие в неравенство, неотрицательны). Но при этом условии можно умножить данное неравенство на положительное выражение .
Итак, если , данное неравенство преобразуется и решается так:
В том случае, когда , данное неравенство будет выполняться, так как его отрицательная левая часть станет меньше положительной правой.
Ответ: .
Замечание. При решении последней задачи мы фактически получили такие новые схемы, легко выводимые из схем (1) и (2):
(4)
(5)
Если в правой части подобного неравенства стоит не единица, а любое другое число кроме нуля, можно естественно, поделить на него обе части неравенства и, в зависимости от знака этого числа, перейти к неравенствам из схем (4) или (5).
... на основе знания связи между результатом и компонентами арифметических действий (т.е. знания способов нахождения неизвестных компонентов). Эти требования программы определяют методику работы над уравнениями. 2. Методика изучения неравенств в старших классах 2.1 Содержание и роль линии уравнений и неравенств в современном школьном курсе математики Ввиду важности и обширности материала, ...
... на качественно новую ступень овладения содержанием школьной математики. Глава II. Методико - педагогические основы использования самостоятельной работы, как средство обучения решению уравнений в 5 - 9 классах. § 1. Организация самостоятельной работы при обучения решению уравнений в 5 - 9 классах. При традиционном способе преподавания учитель часто ставит ученика в положение объекта ...
... , можно сделать вывод о недостаточном освещении изучаемого вопроса в современной методической литературе. Объект исследования работы: процесс обучения математике. Предмет: формирование умения решения квадратных уравнений у учащихся 8-го класса. Контингент: учащиеся 8-го класса. Глава 1. Теоретические аспекты обучению решения уравнений в 8 классе 1.1. Из истории возникновения квадратных ...
... числового аргумента, поэтому при таком подходе наблюдается определённая избыточность в формировании функции как обобщённого понятия. 2. Основные направления введения понятия функции в школьном курсе математики В современном школьном курсе математики ведущим подходом считается генетический с добавлением элементов логического. Формирование понятий и представлений, методов и приёмов в составе ...
0 комментариев