2.2.3. Метод введения новой переменной.
Мощным средством решения иррациональных уравнений является метод введения новой переменной, или «метод замены». Метод обычно применяется в случае, если в уравнении неоднократно встречается некоторое выражение, зависящее от неизвестной величины. Тогда имеет смысл обозначить это выражение какой-нибудь новой буквой и попытаться решить уравнение сначала относительно введенной неизвестной, а потом уже найти исходную неизвестную. В ряде случаев удачно введенные новые неизвестные иногда позволяют получить решение быстрее и проще; иногда же без замены решить задачу вообще невозможно. [6], [17]
Пример 7. Решить уравнение .
Решение. Положив , получим существенно более простое иррациональное уравнение . Возведем обе части уравнения в квадрат: .
Далее последовательно получаем:
;
;
;
;
, .
Проверка найденных значений их подстановкой в уравнение показывает, что – корень уравнения, а – посторонний корень.
Возвращаясь к исходной переменной x, получаем уравнение , то есть квадратное уравнение , решив которое находим два корня: ,. Оба корня, как показывает проверка, удовлетворяют исходному уравнению.
Ответ: , .
Замена особенно полезна, если в результате достигается новое качество, например, иррациональное уравнение превращается в квадратное.
Пример 8. Решить уравнение .
Решение. Перепишем уравнение так: .
Видно, что если ввести новую переменную , то уравнение примет вид , откуда , .
Теперь задача сводится к решению уравнения и уравнения . Первое из этих решений не имеет, а из второго получаем , . Оба корня, как показывает проверка, удовлетворяют исходному уравнению.
Ответ. , .
Отметим, что «бездумное» применение в Примере 8 метода «уединения радикала» и возведение в квадрат привело бы к уравнению четвертой степени, решение которого представляет собой в общем случае чрезвычайно сложную задачу.
Пример 9. Решить уравнение .
Введем новую переменную
, .
В результате исходное иррациональное уравнение принимает вид квадратного
,
откуда учитывая ограничение , получаем . Решая уравнение , получаем корень . Как показывает проверка, удовлетворяет исходному уравнению.
Ответ. .
Иногда посредством некоторой подстановки удается привести иррациональное уравнение к рациональному виду, как рассмотренных Примерах 8, 9. В таком случае говорят, что эта подстановка рационализирует рассматриваемое иррациональное уравнение, и называют ее рационализирующей., основанный на применении рационализирующих подстановок, называется способом рационализации.
Со всеми учащимися на уроке этот способ решения иррациональных уравнений разбирать не нужно, но он может быть рассмотрен в рамках факультативных или кружковых занятий по математике с учащимися, проявляющих повышенный интерес к математике.
... на основе знания связи между результатом и компонентами арифметических действий (т.е. знания способов нахождения неизвестных компонентов). Эти требования программы определяют методику работы над уравнениями. 2. Методика изучения неравенств в старших классах 2.1 Содержание и роль линии уравнений и неравенств в современном школьном курсе математики Ввиду важности и обширности материала, ...
... на качественно новую ступень овладения содержанием школьной математики. Глава II. Методико - педагогические основы использования самостоятельной работы, как средство обучения решению уравнений в 5 - 9 классах. § 1. Организация самостоятельной работы при обучения решению уравнений в 5 - 9 классах. При традиционном способе преподавания учитель часто ставит ученика в положение объекта ...
... , можно сделать вывод о недостаточном освещении изучаемого вопроса в современной методической литературе. Объект исследования работы: процесс обучения математике. Предмет: формирование умения решения квадратных уравнений у учащихся 8-го класса. Контингент: учащиеся 8-го класса. Глава 1. Теоретические аспекты обучению решения уравнений в 8 классе 1.1. Из истории возникновения квадратных ...
... числового аргумента, поэтому при таком подходе наблюдается определённая избыточность в формировании функции как обобщённого понятия. 2. Основные направления введения понятия функции в школьном курсе математики В современном школьном курсе математики ведущим подходом считается генетический с добавлением элементов логического. Формирование понятий и представлений, методов и приёмов в составе ...
0 комментариев