4. Рационализация квадратичных иррациональностей посредством подстановок Эйлера
Квадратичной иррациональностью назовем функцию вида
,
(9)
где
и
– некоторые постоянные. Покажем, что это выражение всегда рационализируется одной из так называемых подстановок Эйлера. При этом мы, конечно, будем считать, что квадратный трёхчлен
неотрицателен и не имеет равных корней (в противном случае корень можно заменить рациональным выражением).
а) Сначала рассмотрим случай, когда дискриминант . В этом случае знак квадратного трёхчлена
совпадает со знаком
, и поскольку этот трёхчлен положителен (в силу условия
равенство трёхчлена нулю невозможно), то
.
Таким образом, мы можем сделать следующую подстановку:
(или )
(10)
Подстановку (10) иногда называют первой подстановкой Эйлера. Докажем, что эта подстановка рационализирует функцию (9) в рассматриваемом случае. Возводя в квадрат обе части равенства
(заметим, что ), получим
, так что
,
где функции и
рациональные. Таким образом,
.
В правой части полученного равенства стоит рациональная функция.
б) Рассмотрим теперь случай, когда дискриминант , то есть квадратный трехчлен
имеет (различные) действительные корни
и
. Следовательно,
.
Аналогично предыдущему доказывается, что в этом случае функция (9) рационализируется посредством подстановки:
, (11)
называемой часто второй подстановкой Эйлера.
Замечание 1. Рационализирующая подстановка (11) справедлива при условии . Следовательно, применяя эту подстановку при решении иррационального уравнения, необходимо проверить, не является ли значение
корнем данного уравнения (иначе возможна потеря этого корня).
Замечание 2. Если , то в этом случае можно положить
(или )
(12)
Ответ: ,
.
Пример 4. Решить уравнение .
Решение. В данном уравнении дискриминант квадратного трехчлена положителен, корни его и
. Найдем другие корни подстановкой
.
Применяя эту подстановку, необходимо проверить, не является ли значение корнем данного уравнения. Итак,
– корень данного уравнения.
Возводя в квадрат обе части равенства , получим
, откуда
. Теперь подставим это значение
в исходное уравнение и последовательно получаем:
и исходное уравнение сводится к уравнению , или
. Это уравнение имеет единственный действительный корень
, тогда
. Итак, исходное уравнение имеет два корня:
и
.
Ответ: ,
.
... на основе знания связи между результатом и компонентами арифметических действий (т.е. знания способов нахождения неизвестных компонентов). Эти требования программы определяют методику работы над уравнениями. 2. Методика изучения неравенств в старших классах 2.1 Содержание и роль линии уравнений и неравенств в современном школьном курсе математики Ввиду важности и обширности материала, ...
... на качественно новую ступень овладения содержанием школьной математики. Глава II. Методико - педагогические основы использования самостоятельной работы, как средство обучения решению уравнений в 5 - 9 классах. § 1. Организация самостоятельной работы при обучения решению уравнений в 5 - 9 классах. При традиционном способе преподавания учитель часто ставит ученика в положение объекта ...
... , можно сделать вывод о недостаточном освещении изучаемого вопроса в современной методической литературе. Объект исследования работы: процесс обучения математике. Предмет: формирование умения решения квадратных уравнений у учащихся 8-го класса. Контингент: учащиеся 8-го класса. Глава 1. Теоретические аспекты обучению решения уравнений в 8 классе 1.1. Из истории возникновения квадратных ...
... числового аргумента, поэтому при таком подходе наблюдается определённая избыточность в формировании функции как обобщённого понятия. 2. Основные направления введения понятия функции в школьном курсе математики В современном школьном курсе математики ведущим подходом считается генетический с добавлением элементов логического. Формирование понятий и представлений, методов и приёмов в составе ...
0 комментариев