Рационализация квадратичных иррациональностей посредством подстановок Эйлера

Методика решения иррациональных уравнений и неравенств в школьном курсе математики
Теоретические основы решения уравнений Наиболее важные приемы преобразования уравнений Методы решения иррациональных уравнений Метод сведения к эквивалентной системе уравнений и неравенств Метод введения новой переменной Метод сведения к эквивалентным системам рациональных уравнений Умножение обеих частей уравнения на функцию Использование ОДЗ Тождественные преобразования при решении иррациональных уравнений Теоретические основы решения иррациональных неравенств Умножение обеих частей неравенства на функцию Решение иррациональных неравенств с использованием свойств входящих в них функций Использование графиков функций Рациональность дробно-линейных иррациональностей Рационализация квадратичных иррациональностей посредством подстановок Эйлера Рационализация с помощью тригонометрических подстановок
98604
знака
5
таблиц
19
изображений

4.  Рационализация квадратичных иррациональностей посредством подстановок Эйлера

Квадратичной иррациональностью назовем функцию вида

, (9)

где   и  – некоторые постоянные. Покажем, что это выражение всегда рационализируется одной из так называемых подстановок Эйлера. При этом мы, конечно, будем считать, что квадратный трёхчлен  неотрицателен и не имеет равных корней (в противном случае корень можно заменить рациональным выражением).

а)  Сначала рассмотрим случай, когда дискриминант . В этом случае знак квадратного трёхчлена  совпадает со знаком , и поскольку этот трёхчлен положителен (в силу условия  равенство трёхчлена нулю невозможно), то .

Таким образом, мы можем сделать следующую подстановку:

(или ) (10)

Подстановку (10) иногда называют первой подстановкой Эйлера. Докажем, что эта подстановка рационализирует функцию (9) в рассматриваемом случае. Возводя в квадрат обе части равенства

(заметим, что ), получим , так что

,

где функции  и рациональные. Таким образом,

.

В правой части полученного равенства стоит рациональная функция.

б)   Рассмотрим теперь случай, когда дискриминант , то есть квадратный трехчлен  имеет (различные) действительные корни  и . Следовательно,

.

Аналогично предыдущему доказывается, что в этом случае функция (9) рационализируется посредством подстановки:

 , (11)

называемой часто второй подстановкой Эйлера.

Замечание 1. Рационализирующая подстановка (11) справедлива при условии . Следовательно, применяя эту подстановку при решении иррационального уравнения, необходимо проверить, не является ли значение  корнем данного уравнения (иначе возможна потеря этого корня).

Замечание 2. Если , то в этом случае можно положить

(или ) (12)

Ответ: , .

Пример 4. Решить уравнение .

Решение. В данном уравнении дискриминант квадратного трехчлена положителен, корни его  и . Найдем другие корни подстановкой

.

Применяя эту подстановку, необходимо проверить, не является ли значение  корнем данного уравнения. Итак,  – корень данного уравнения.

Возводя в квадрат обе части равенства , получим , откуда . Теперь подставим это значение  в исходное уравнение и последовательно получаем:

и исходное уравнение сводится к уравнению , или . Это уравнение имеет единственный действительный корень , тогда . Итак, исходное уравнение имеет два корня:  и .

Ответ: , .


Информация о работе «Методика решения иррациональных уравнений и неравенств в школьном курсе математики»
Раздел: Педагогика
Количество знаков с пробелами: 98604
Количество таблиц: 5
Количество изображений: 19

Похожие работы

Скачать
37778
0
2

... на основе знания связи между результатом и компонентами арифметических действий (т.е. знания способов нахождения неизвестных компонентов). Эти требования программы определяют методику работы над уравнениями. 2. Методика изучения неравенств в старших классах 2.1 Содержание и роль линии уравнений и неравенств в современном школьном курсе математики Ввиду важности и обширности материала, ...

Скачать
123013
25
0

... на качественно новую ступень овладения содержанием школьной математики. Глава II. Методико - педагогические основы использования самостоятельной работы, как средство обучения решению уравнений в 5 - 9 классах.   § 1. Организация самостоятельной работы при обучения решению уравнений в 5 - 9 классах.   При традиционном способе преподавания учитель часто ставит ученика в положение объекта ...

Скачать
46858
6
0

... , можно сделать вывод о недостаточном освещении изучаемого вопроса в современной методической литературе. Объект исследования работы: процесс обучения математике. Предмет: формирование умения решения квадратных уравнений у учащихся 8-го класса. Контингент: учащиеся 8-го класса. Глава 1. Теоретические аспекты обучению решения уравнений в 8 классе   1.1.  Из истории возникновения квадратных ...

Скачать
20346
1
2

... числового аргумента, поэтому при таком подходе наблюдается определённая избыточность в формировании функции как обобщённого понятия. 2. Основные направления введения понятия функции в школьном курсе математики В современном школьном курсе математики ведущим подходом считается генетический с добавлением элементов логического. Формирование понятий и представлений, методов и приёмов в составе ...

0 комментариев


Наверх