2.3. Гидравлический расчёт систем охлаждения
Для определения характеристик трубопроводов и параметров насосов системы охлаждения производится гидравлический расчет.
Современные достижения в гидромеханике позволяют производить достаточно точные гидравлические расчеты судовых систем, однако непрерывное развитие техники, применение новых схем и способов охлаждения судовых дизелей, о некоторых из которых сказано выше, требует дальнейшего исследования процессов, протекающих в системах охлаждения с целью их уточнения и разработки новых методик их расчета.
В общем случае любая судовая система, представляющая собой единый комплекс, состоящий из трубопровода и гидравлической машины (насоса), может выполнять свои функции только при условии, если параметры системы и насоса будут соответствовать друг другу.
Для достижения установившегося режима работы системы необходимо, чтобы массовый расход жидкости в системе был равен массовой производительности насоса .
В частном случае, когда рабочей средой системы является несжимаемая жидкость, это условие будет удовлетворено при равенстве объемного расхода в системе и объемной производительности насоса.
Из уравнения энергетического баланса комплекса насос-трубопровод следует, что потребляемая системой энергия, равная ее полезной мощности:
,
должна равняться приращению энергии, сообщаемой жидкости в процессе энергообмена, т. е. величине:
,
где – плотность жидкости, кг/м3.
Поэтому установившийся режим работы системы возможен лишь при условии равенства напора , развиваемого насосом, полному напору в трубопроводе системы .
Определение условий, при которых трубопровод системы в заданном расчетном режиме будет работать устойчиво при использовании данного насоса, и составляет задачу гидравлического расчета.
По сложности гидравлические расчеты судовых систем можно условно разделить на две группы:
Гидравлические расчеты “простых” трубопроводов;
Гидравлические расчеты “сложных” (разветвленных и неразветвленных) трубопроводов.
Простым трубопроводом называется трубопровод с постоянными известными характеристиками, например, напором Н, внутренним диаметром D, средней по сечению скорости V или Q.
Сложным трубопроводом называется трубопровод, состоящий из магистральной линии и отводов от нее, причем магистраль состоит из участков в виде простых трубопроводов, каждый из которых характеризуется постоянными заданными по длине характеристиками. Независимо от сложности трубопровода, в нем всегда можно выделить отдельные участки, в пределах которых величины расходов и внутренние диаметры труб постоянны. Поэтому любой сложный трубопровод сводится к расчету большого числа простых трубопроводов; такие трубопроводы, выделенные из сложного, называют расчетными участками.
В зависимости от заданных (известных) характеристик все случаи расчета трубопроводов сводятся к решению двух типовых задач: прямой и обратной.
В прямой задаче требуется определить расходы по ответвлениям, а заданными являются характеристики насоса (производительность, напор) и трубопровод с ответвлениями (диаметр и длина труб, тип и количество арматуры и фасонных частей).
Обратная задача состоит в нахождении геометрических параметров элементов трубопровода и характеристик насоса при заданных расходах жидкости по потребителям.
Правильно спроектированная система должна удовлетворять следующим условиям:
расход жидкости к потребителям должен практически соответствовать заданному;
средняя по сечению скорость жидкости в трубопроводе не должна превышать предельных значений.
При проектировании систем гидравлический расчет трубопроводов производится в предположении, что общие потери давления в системе равны сумме потерь давления на трение в прямолинейных участках трубопровода , потерь давления в местных сопротивлениях (арматуре, фасонных элементах и т. д.) и статического сопротивления (геометрическая высота, подпор в цистерне) .
Определение величин , , производится соответственно по формулам:
,
,
,
где – коэффициент сопротивления трения по длине;
– коэффициент местного сопротивления;
– длина прямолинейных участков трубопровода;
– внутренний диаметр трубопровода;
– ускорение свободного падения;
– геометрическая высота – разность входа и выхода трубопровода.
Если в процессе эксплуатации системы режим ее работы изменяется (за расчет изменения количества потребителей или изменения количества потребляемой жидкости), необходимо производить гидравлические расчеты всех возможных вариантов работы системы.
В связи с тем, что гидравлические расчеты судовых систем являются в достаточной мере трудоемкими, во многих случаях могут быть применены различного рода упрощенные способы, графики и таблицы заранее вычисленных величин.
Для гидравлического расчета системы охлаждения заданным является расход теплоносителя через потребители (теплообменники) по ответвлениям, а также схема расположения трубопровода и арматуры.
В результате расчета требуется определить диаметры трубопроводов и характеристику насоса, обеспечивающие заданные расходы по потребителям.
Для выполнения этой задачи разработана следующая последовательность расчета:
Выбирается расчетная схема трубопровода и определяется состав арматуры, фасонных и прямолинейных элементов и потребителей.
Выделяется основная магистраль и ответвления. За основную магистраль применяется такое последовательное расположение элементов трубопровода от конца его до насоса, которое по предварительной оценке имеет наибольшее сопротивление.
На схеме намечаются узловые точки. Узловой точкой трубопровода является точка, имеющая два или более расходящихся или сходящихся потока жидкости, а также точка, в которой заканчивается основная магистраль или ответвление.
Часть магистрали, находящаяся между двумя ближайшими узловыми точками, является группой сопротивления.
Ответвление может состоять из одной линии трубопровода или иметь дополнительные ответвления.
Разбивается каждая группа сопротивлений на участки – последовательные соединения элементов трубопровода, в которых скорость воды и ее расход остаются постоянными.
Указываются на схеме для каждого участка требуемый расход (Q), скорость воды (V), длины прямых участков трубопроводов (l) и расчетный диаметр трубопровода (D).
Определяются конструктивные значения диаметров труб системы.
По справочным таблицам определяются величины коэффициентов местных сопротивлений и рассчитываются потери давления от местных сопротивлений по каждому участку.
Если в узловой точке находится тройник, то в каждую из соединяющихся групп включается сопротивление соответствующего отростка этого тройника.
Производится определение потерь давления от трения по участкам. Затем рассчитывается суммарная потеря давления (от местных сопротивлений и от потерь на трение) по каждому из участков и групп сопротивления, в результате чего определяются узловые давления.
Узловое давление определяется как сумма среднего узлового давления в предшествующей точке и потери давления между предшествующей и данной узловыми точками.
Устанавливаются давления в узловой точке, подсчитанные по основной магистрали и ответвлению. Если они различаются меньше, чем на 5%, то расчетное узловое давление принимается равным среднему арифметическому из двух значений. Если же различие больше 5%, то давление следует уравнять.
Для уравнивания давлений наиболее целесообразно изменить поперечное сечение одного из ответвлений (в пределах обеспечения допустимых скоростей). При невозможности этого устанавливают в ответвлении с меньшим сопротивлением дроссельные устройства, простейшим из которых является дроссельная диафрагма.
Определяется коэффициент местного сопротивления дроссельного устройства, для чего следует разность между величинами узлового давления, подсчитанными по магистрали и ответвлению, разделить на динамическое давление потока жидкости в месте установки устройства.
Подсчитывается давление в напорном патрубке насоса, которое равно сумме узлового давления последней узловой точки основной магистрали и потерь давления по основной магистрали от последней узловой точки до насоса.
Рассчитывается аналогично напорному патрубку сопротивление приемной магистрали.
Определяется давление, развиваемое насосом, как алгебраическая разность полных давлений в напорном и всасывающем патрубках насоса.
Подбирается насос по общей производительности и давлению, которые определены расчетом.
Гидравлический расчет судовых систем дает общую точность в пределах 10%, обусловленную теми погрешностями, которые заключены в исходных данных и эмпирических коэффициентах, принимаемых в расчете. Разработанная на основе изложенного подхода программа расчетов и проектирования судовых систем позволяет рассматривать протекающие в них процессы взаимосвязанными, моделировать режимы работы и выбирать оптимальные конструктивные и эксплутационные параметры систем охлаждения.
... массы ковша. Грейфер применяют обычно для разработки грунтов малой плотности (I и II группы) и находящихся под водой. Более плотные грунты предварительно необходимо рыхлить. Производительность одноковшового экскаватора снижается по мере увеличения плотности грунта. Кроме того, она зависит от способа разработки грунта (при работе "на вымет" производительность повышается, при погрузке на ...
... Мощность электродвигателя , кВт, привода дробилки рассчитывается по формуле , (11) где - удельный энергетический показатель дробилки, при дробимом материале известняке [1]; - производительность дробилки, м3/ч; - степень дробления, для роторной дробилки типоразмера 1250´1000 мм [1]; - средневзвешенный диаметр исходного продукта, м; ...
... с короткозамкнутым ротором (КЗР) с характеристиками, не уступающим характеристикам двигателей постоянного тока (ДПТ). 3. СПЕЦИАЛЬНАЯ ЧАСТЬ. 3.1 Требования к электроприводу скребкового конвейера применительно к условиям данного цеха. При проектирование электрооборудования и устройств автоматики следует учесть что, цех РОЦ ...
... : ºС 3.Организационно-экономическая часть 3.1 Сравнительный технико-экономический анализ проектируемого и базового варианта В дипломном проекте решается задача решается задача необходимости модернизации патронного полуавтомата 1П756. Эта необходимость вызвана тем, что базовый вариант станка не соответствует современным требованиям, в частности, по надежности. Модернизация ...
0 комментариев