Выбор шин на стороне 10 кВ

Реконструкция и модернизация подстанции "Ильинск"
Организация эксплуатации РАСЧЕТ МОЩНОСТИ И ВЫБОР ГЛАВНЫХ ПОНИЖАЮЩИХ ТРАНСФОРМАТОРОВ Определение расчётной мощности подстанции Собственные нужды подстанции Выбор силовых трансформаторов Технико-экономический расчёт трансформаторов (по приведённым затратам) Расчет геометрических параметров ячейки и всего ОРУ 110 кВ Определение параметров схемы замещения Расчёт токов КЗ ВЫБОР КОММУТАЦИОННОЙ , ЗАЩИТНОЙ АППАРАТУРЫ И СБОРНЫХ ШИН Выбор аппаратуры на стороне ВН Выбор трансформаторов тока и напряжения Выбор трансформаторов напряжения Выбор дугогасительной катушки Выбор шин на стороне 10 кВ Расчет защиты силовых трансформаторов Максимальная токовая защита с пуском по напряжению Устройство АВР секционного выключателя 10 кВ ОБОСНОВАНИЕ ИЗМЕРИТЕЛЬНОЙ АППАРАТУРЫ Характеристика обьекта строительства Определение капитальных затрат на реконструкцию подстанции Проектирование рабочего места диспетчера
111383
знака
33
таблицы
3
изображения

6.4.2 Выбор шин на стороне 10 кВ

 

Iннраб,max=115.5 [A],

gмин= Ö Вк /ct= Ö66.3×106 /90=90.47 [мм2].

Сборные шины выполним жесткими алюминиевыми.Выбираем однополосные алюминиевые шины прямоугольного сечения размером b´h=50´5 мм:


Iдоп=665 А> Iннраб,max=115.5 A,

условие по допустимому току выполняется.

Площадь поперечного сечения : S=2.49 cм2 ,

масса 1 м шины :0.672 кг ( табл.7.2[2]).

Механическая система:две полосы-изоляторы должны иметь частоту собственных колебаний больше 200 Гц , чтобы не произошло резкого увеличения усилий в результате механического резонанса.Исходя из этого первое условие выбора пролёта:

 

l £ 0.133×10-2 × 4 Ö E× Jn /mn, (6.4.3)

где Jn=b×h3/12 – момент инерции полосы;

mn= 2.152 кг/м ;

E=7×1010 Па – модуль упругости.

Второе условие выбора такое, чтобы электродинамические силы, возникающие при КЗ не вызывали соприкосновение полос:

l n £ 0.216×Öаn/ iуд× 4 Ö E× Jnср , (6.4.4)

где кср=0.47;

аn=2×0.8=1.6 см – расстояние между осями полос.

По первому условию

Jn=b×h3/12=5×0.53/12=0.34 ,

тогда l=0.133×10-24 Ö 7×1010×0.05/0.672 =0.36 [м].


По второму условию


l n=0.216× Ö1.6/ 10.6×103 × 4Ö 7×1010×0.05/0.47 =0.78 [м]

Принимаем l n=0.36 м ,

тогда число прокладок в пролете n=l / l n-1 , где l=1.2 м

n=1.2/0.36 – 1=2.3 принимаем n=2

При двух прокладках в пролете, расчетный пролет

l n=l /n+1=1.2/3=0.4 [м].

Определим силу взаимодействия между полюсами:

 fn= (iуд2×кср/4×h) ×10-7, (6.4.8)

 fn= ((10.6×103)2×0.47/4×0.005) ×10-7=264.05 [Н/м].

Напряжение в материале полос:

fn × l n2

 sn= (6.4.9)

12× Wn

 

где Wn= h2×b/6 – момент сопротивления одной полосы ;

Wn= 0.52×5/6=0.21 , тогда

 sn =264.05×0.42/12×0.21=16.76 [МПа].


Напряжение в материале шин от взаимодействия фаз:

 

l2×iуд2

sф= Ö3 ×10-8 , (6.4.10)

а× Wср

 

где Wср = h2×b/3 – момент сопротивления;

Wср = 0.52.5/3=0.42 ,

а=0.8 – расстояние между фазами.

sф=1.732×10-8×1.22×10.62×106/0.8×0.42=8.3 [МПа],

шины остаются механически прочными , если

sрасч=sn+sф£sдоп ; (6.4.11)

sдоп=75 [МПа],

sрасч=16.76+8.3=25.1<75 условие выполняется.


7. РАСЧЕТ УСТРОЙСТВ ЗАЗЕМЛЕНИЯ И МОЛНИЕЗАЩИТЫ

При расчёте молниезащиты используется методика из [3]. Принимаем высоту молниеотвода h=50 м ,(см.рис.6)

Зона защиты одиночного стержневого молниеотвода

Равнобедренный треугольник:           &#13;&#10;    &#13;&#10;&#13;&#10;  hx&#13;&#10;&#13;&#10;&#13;&#10;ffgf&#13;&#10; О

О’

 K rx M


B B’ C A’ A

Рис.6

Длина отрезков: CA’=CB’=0.75×h=0.75×50=37.5 [м],

Расстояние: CO’=0.8×h=0.8×50=40 [м],

Длина отрезков: CA=CB=1.5×h=1.5×50=75 [м].

Защиты определяются по следующим выражениям:

rx=1.5(h-1.25hx) при 0 £ hx£ 2/3h , (7.1)

rx=0.75(h-hx) при hx³ 2/3h. (7.2)

Оптимальная высота молниеотвода определяется из предыдущих выражений по формулам:

hопт = (rx+1.9hx)/1.5 при 0 £ hx £ 2/3h , (7.3)

hопт = (rx+0.75hx)/0.75 при hx ³ 2/3h (7.4)

При hx=20 м

rx=1.5(50-1.25×20)=37.5 [м],

hопт = (37.5+1.9×20)/1.5=50.3 [м].

При hx=40 м

rx=0.75(50-40)=7.5 [м],

hопт = (7.5+0.75×40)/0.75=50 [м].

Устанавливаем на подстанции 4 молниеотвода (смотри план подстанции).

При расчёте устройства заземления для электроустановок 110 кВ и выше согласно ПУЭ сопротивление заземляющей установки должно быть не более 0.5 Ом.

Принимаем сопротивление естественных заземлителей Rе=1.5 Ом. Расчётное удельное сопротивление грунта :

rрасч=rизм×Y, (7.5)

где Y=1.4 – климатический коэффициент для сухого твердого суглинка,

rизм =Rгр=215 [Ом×м],

тогда:

rрасч=215×1.4=301 [Ом×м].

Находим сопротивление исскуственного заземлителя:

Rи= Rе×Rз/ Rе-Rз=1.5×0.5/1.5+0/5=0.75 [Ом]. (7.6)

В качестве вертикального стержня принимаем стальную трубу длиной 3 м и d=0.05 м. При заглублении вертикального стержня ниже уровня земли на 0.7 м ,т.е Н0=0.7 м

Rв= (rрасч / 2p×L)× [ln(2×L)/d+0.5ln(4H0+L)/(5H0+L)], (7.7)

Rв=(301/18.85)×(4.78+1.22)=95.81 [Ом],

На глубине Н=Н0+L/2=2.2 м

 

Rв= (rрасч / 2p×L)× [ln(2×L)/d+0.5ln (4H+L)/(5H+L)]

=(301/18.85)×(4.78+1.22)=79.55 [Ом].

Определим общее сопротивление сетки горизонтальных проводников , выполненных из полосовой стали сечением 40´4 мм . Общая длина горизонтальных заземлителей равна 848 м. Число вертикальных стержней примем 100:

Rг= (rрасч / 2p×L)×ln(2×L2)/b×H=(301/18.85)×17.75=283.5 [Ом],

где  b=40 мм – ширина полосы

Н=0.7 м .

Вертикальные стержни располагаем через 8.5 м ,отсюда Rг с учётом коэффициента использования h=0.19 соединительной полосы:

Rг= 283.5/0.19=1492.1 [Ом].

Уточняем сопротивление искусственного заземлителя

Rи’= Rи×Rг/ Rи+Rг=1.5×0.5/1.5+0/5=0.749 [Ом].

Окончательное число вертикальных заземлителей с учётом коэффициента использования hст=0.5:

n= Rв/hст×Rи’=79.55/0.749×0.5=213 штук.


8. РАСЧЕТ РЕЛЕЙНОЙ ЗАЩИТЫ

Питание цепей релейной защиты и автоматики (РЗА) осуществляется на постоянном оперативном токе от аккумуляторной батареи 220 В. Устройство РЗА всех элементов ПС за исключением ВЛ-10 кВ, секционного выключателя 10 кВ и ТСН размещается на панелях в здании ОПУ. Защита остальных элементов выполнена с использованием оборудования, поставляемого комплектно с камерами КРУН К-37, из которых комплектуется РУ 10 кВ.

 В соответствии с [4] для силового трансформатора 10 000 кВА должны выполнятся защиты: дифференциальная токовая и газовая, которые используются в качестве основных защит, максимальная токовая защита (МТЗ), используемая в качестве резервной, и защита от перегрузки с действием на сигнал.


Информация о работе «Реконструкция и модернизация подстанции "Ильинск"»
Раздел: Физика
Количество знаков с пробелами: 111383
Количество таблиц: 33
Количество изображений: 3

Похожие работы

Скачать
147721
46
4

... по этой статье объясняется тем, что эти затраты зависят от объемов перекачки нефти, а, как уже отмечалось выше, объем перекачки нефти за анализируемый периодснизился на 26,1%. 1.3 Анализ внешней среды АО “СИБНЕФТЕПРОВОД” Магистральные нефтепроводы обеспечивают транспорт 97% добываемой в России нефти. Все нефтеперерабатывающие заводы (НПЗ) и пункты экспорта (за исключением Дальнего Востока) ...

Скачать
32710
2
1

... , 38% - на разные грузы. В 1951 г. было разобрано 9,3 км грузовых веток, и их протяженность сократилась с 27,4 км до 18,1 км. На 1 января 1956 г. протяжённость одиночного пути московского трамвая составляла 519,3 км, в т.ч. пассажирского - 440,7 км, деповских и заводских - 59,6 км, грузовых - 13,5 км. Средний выпуск на линию в 1955 г. составлял 1697 вагонов (при инвентаре 1968). Средняя ...

Скачать
189934
24
18

... ); 4.         открытие отделения экстракорпоральной дотоксикации (искусственная почка) на базе КГБ №1.   3. Проектная часть. Разработка проектных мероприятий Основные направления совершенствования финансирования системы здравоохранения Красногорского района Московской области Обеспеченность финансовыми ресурсами государственных гарантий населению в сфере здравоохранения. В сложившейся ...

Скачать
144589
2
2

... , что благодаря своему уникальному экономико-географическому положению, наличию большой сырьевой базы промышленность региона будет продолжать развиваться. А для ее успешного развития необходимо опережающее развитие транспортной системы, в том числе и авиационного транспорта. В Дальневосточном Федеральном округе крупнейшим аэропортом федерального значения является Хабаровский аэропорт. Он обладает ...

0 комментариев


Наверх