Асинхронные реверсивные двоичные счетчики с последовательным переносом

Компьютерная схемотехника
Квантование по уровню Выбор величины шага квантования по времени Переключательные функции одной переменной (n=1) Базисные логические функции Дизъюнктивная нормальная форма (ДНФ) Общие правила минимизации Инвертор (логический элемент НЕ) Дизъюнктор (логический элемент ИЛИ) ИЛИ–НЕ Сложение по модулю два (нечетность) Сложение по модулю два с отрицанием (четность) Эквивалентность Неэквивалентность И–ИЛИ–НЕ Запрет Логические элементы с третьим состоянием Реализация логических функций в различных базисах Коэффициент разветвления по выходу (Краз) Допустимые значения основных параметров Базовый ЭСЛ - элемент ИЛИ/ИЛИ-НЕ Ом < R < 470 Ом.(8.4) Типовые КЦУ Шифраторы двоично-десятичного кода Дешифратор BCD-кода в семисегментный код Мультиплексоры и демультиплексоры Демультиплексоры Устройства контроля четности (УКЧ) Построение КЦУ на дешифраторах Последовательностные цифровые устройства Синхронные RS - триггеры D-триггеры (триггеры задержки) Триггеры в интегральном исполнении Регистры сдвига Асинхронный суммирующий двоичный счетчик с последовательным переносом Асинхронный вычитающий двоичный счетчик с последовательным переносом Асинхронные реверсивные двоичные счетчики с последовательным переносом Счетчики в интегральном исполнении Распределители Устройство выборки-хранения (УВХ) Цифро-аналоговые преобразователи (ЦАП1...ЦАП3) АЦП К1113 ПВ1 Устройство выборки и хранения (УВХ) Функциональные возможности и схема включения микросхемы УВХ К1100СК2 (КР1100СК2) АЦП MAX154 Расчет АЦП MAX154 Расчет ЦАП К572 ПА1 Расчет ЦАП MAX506 Обмен между МП-м (ОМЭВМ) и ПК по последовательному каналу связи с помощью интерфейса RS-232С Шинный формирователь Выбор ФНЧ Разработка схемы алгоритма и управляющей программы
234167
знаков
51
таблица
162
изображения

9.2.3.3 Асинхронные реверсивные двоичные счетчики с последовательным переносом

Часто возникает необходимость, чтобы счетчики обладали способностью выполнять сложение или вычитание, т.е. были реверсивными.

В таких счетчиках объединяются схемы суммирующего и вычитающегосчетчиков. Реверсивные счетчики могут иметь два или один входа для подачи счетных сигналов.

Ниже показана схема реверсивного асинхронного счетчика имеющего один счетный вход (рисунок 9.53).


Рисунок 9.53

Единичным управляющим сигналом на входе +1 или -1 счетчик настраивается на работу в режиме суммирования (на входе +1 – единица, а на выходе -1 – нуль) или в режиме вычитания (на входе +1 – нуль, -1 – единица).

Асинхронные счетчики имеют простую структуру, но обладают рядом недостатков:

1) схема имеет сравнительно низкое быстродействие, т.к. при поступлении каждого счетного импульса триггеры переключаются последовательно и к i-му разряду переключающий сигнал проходит через (i-1) предыдущих. Поэтому интервал меду соседними входными импульсами должен превышать tпер∙(n-1), где tпер - время переключения одного триггера, а n - число разрядов счетчика.

2) в ходе переключения младшие разряды принимают уже новые состояния, в то время как старшие еще находятся в прежнем. Т.е. при смене одного числа другим счетчик проходит ряд промежуточных состояний, каждое из которых может быть ошибочно принято за двоичный код числа поступивших на вход импульсов.

Когда для устройства, в состав которого входит счетчик, отмеченные недостатки являются существенными, используют синхронные счетчики.

 

9.2.3.4 Синхронный счетчик со сквозным переносом

В таких счетчиках состояние триггеров изменяется одновременно под действием сигналов синхронизации на входах всех триггеров.

На рисунке 9.54 приведен суммирующий синхронный счетчик, выполненный на JK-триггерах.

Рисунок 9.54

В схеме с помощью конъюнкторов организован так называемый сквозной (параллельный) перенос. Его идея состоит в том, что сигнал переноса поступает на J, K входы последующих триггеров лишь в том случае, если предыдущие находятся в состоянии единица. Триггер Тг1 переключается каждым счетным импульсом, т.к. на его J и K входы постоянно подается единица. Остальные триггеры переключаются счетными импульсами при следующих условиях: Тг2 - при Q1=1; Тг3 - при Q1=1; Q2=1; Тг4 - при Q1=1; Q2=1; Q3=1.

Недостатком описанного счетчика является необходимость иметь конъюнкторы с большим количеством входов, число которых возрастает с увеличением числа разрядов. Если число разрядов синхронного счетчика не превышает четыре, то схему можно реализовать без внешних конъюнкторов, используя JK-триггеры с входной логикой И.

Ниже показана схема суммирующего синхронного счетчика, у которого число разрядов равно трем (рисунок 9.55).


Рисунок 9.55

Аналогично может быть построен вычитающий синхронный счетчик со сквозным переносом (рисунок 9.56).

Рисунок 9.56

Реверсивный синхронный счетчик со сквозным переносом приведен на рисунке 9.57.

 

Рисунок 9.57


Схема содержит один источник сигналов счета и два управляющих входа для переключения счетчика на суммирование (+1) или вычитание (-1). На выходе счетчика, обозначенном >7, единичный сигнал появляется при поступлении седьмого импульса и переходе счетчика в состояние, в котором все триггеры установлены в 1. Следующим восьмым импульсом на этом выходе появляется сигнал переноса в следующий разряд в виде перепада из 1 в 0.

На выходе <0 единичный сигнал появляется при установке всех триггеров в нулевое состояние и приходе очередного вычитающего импульса. При этом все триггеры устанавливаются в единицу, а на выходе <0 появляется сигнал заема в виде перепада из 1 в 0.

9.2.3.5 Десятичные счетчики

Как отмечалось ранее, в двоичных счетчиках коэффициент пересчета (счета), т.е. число различных устойчивых состояний, равен 2n, где n - число разрядов. Однако в ряде случаев требуется, чтобы коэффициент пересчета счетчика был отличным от этого значения. Широкое распространение получили, например, десятичные счетчики, для которых Ксч = 10. Такой счетчик после каждого десятого импульса возвращается в исходное состояние, формируя при этом на выходе импульс переноса. Разрядность счетчика с произвольным коэффициентом пересчета (не равным 2n) определяется из условия

 

2n-1 < Ксч < 2n. (9.21)

Очевидно, что для Ксч = 10 требуется число разрядов n = 4. Поскольку двоичный 4-х разрядный счетчик имеет 16 различных устойчивых состояний, то для реализации схемы с Ксч = 10 необходимо исключить N = 16 - 10 = 6 избыточных состояний. Это можно осуществить путем введения обратных связей с выхода счетчика на единичные входы триггеров тех разрядов, которые в двоичном представлении числа N содержат единицы. Так, для N = 610 = 01102 сигнал обратной связи следует подать на единичные входы триггеров второго и третьего разрядов.

Рисунок 9.58

На рисунке 9.58 изображена функциональная схема, а в таблице 9.16 приведены состояния десятичного счетчика.

Одновибратор необходим, так как без него на выходе Q4 после прихода каждого десятого импульса будет 0, а на  – 1. Если эту единицу использовать как установку Тг2 и Тг3 в единицу, то при приходе очередного счетного импульса на S входе будет 1, чего допустить нельзя.

Таблица 9.16

импульса

Состояние триггеров

импульса

Состояние триггеров
Q4 Q3 Q2 Q1 Q4 Q3 Q2 Q1
0 0 1 1 0 6 1 1 0 0
1 0 1 1 1 7 1 1 0 1
2 1 0 0 0 8 1 1 1 0
3 1 0 0 1 9 1 1 1 1
4 1 0 1 0 10 0 1 1 0
5 1 0 1 1 11 0 1 1 1

Перед началом работы импульсом “сброс” счетчик обнуляется, а затем сигналом УИС в триггеры ТГ1, Тг3 записываются единицы, т.е. счетчик устанавливается в исходное состояние 01102, что соответствует числу 6D. После прихода девятого импульса схема переключится в состояние 11112, а затем очередной (десятый) импульс формирует на выходе (Q4) сигнал переноса (перепад из 1 в 0). Этим сигналом запускается одновибратор ОВ, формирующий короткий единичный импульс, который до прихода очередного счетного импульса вновь установит счетчик в исходное состояние 01102.

Далее описанный процесс повторяется, и счетчик имеет 10 устойчивых состояний (Ксч = 10) и формирует на выходе сигнал переноса после прихода каждого 10-го импульса.

Рисунок 9.59

Рассмотренную схему (рисунок 9.58) можно упростить без изменения логики ее функционирования. Вместо одновибратора и двух дизъюнкторов вводится один четырехвходовый конъюнктор (рисунок 9.59), который обеспечивает установку счетчика в состояние 01102 вначале работы и при поступлении 10-го импульса, когда все триггеры переключаются в нулевое состояние.

Существует еще ряд способов исключения избыточных состояний, например, используя принудительное обнуление схемы при достижении счетчиком состояния, равного Ксч.

Схема десятичного счетчика, построенная по данному способу, показана на рисунке 9.60.


Рисунок 9.60

Перед началом счета сигналом УИС все триггеры счетчика устанавливаются в исходное нулевое состояние. При поступлении на счетный вход 10 импульсов на выходах Q2 и Q4 установятся единицы, благодаря чему единичным сигналом с выхода конъюнктора все триггеры вновь будут сброшены в 0. При этом на выходе счетчика (Q4) первый раз появится сигнал переноса (перепад из 1 в 0), свидетельствующий о том, что на вход счетчика пришло десять импульсов. Далее описанный процесс повторяется.


Информация о работе «Компьютерная схемотехника»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 234167
Количество таблиц: 51
Количество изображений: 162

Похожие работы

Скачать
100365
3
18

... правило, выполняется в виде одной «большой» ИМС. Схемотехника является частью микроэлектроники, предметом которой являются методы построения устройств различного назначения на микросхемах широкого применения. Предметом же цифровой схемотехники являются методы построения (проектирования) устройств только на цифровых ИМС. Особенностью цифровой схемотехники является широкое применение для описания ...

Скачать
35831
55
44

осхемы К155ЛА3 (4 логических элемента 2И-НЕ). Принцип работы ЛЭ И-НЕ ТТЛ Основная особенность микросхем ТТЛ состоит в том, что во входной цепи используется специфический интегральный прибор – многоэмиттерный транзистор (МЭТ), имеющий несколько эмиттеров, объединенных общей базой. Эмиттеры расположены так, что непосредственное взаимодействие между ними через участок базы отсутствует. Поэтому МЭТ ...

Скачать
38073
13
21

... . Минимальное количество листов графических работ формата А1 — два. Графические документы выполняются карандашом или черной тушью на листах ватмана формата А1. Возможно выполнение чертежей с применением ЭВМ. Допускается использовать формат А2. Листы нумеруются. Номер помещается в верхнем левом углу листа. Допускается выполнять номера на отдельных листах бумаги, которые прикрепляются во время ...

Скачать
34672
3
0

устройств вычислительной техники. Задачи проекта: Разработать печатную плату устройства управления питания компьютерной системы, произвести выбор и обоснование технологического процесса изготовления печатной платы, с исходными данными к проекту: схема электрическая принципиальная. Объём и содержание расчётно-пояснительной записки и графических работ произвести согласно техническому заданию. ...

0 комментариев


Наверх