Разработка схемы алгоритма и управляющей программы

Компьютерная схемотехника
Квантование по уровню Выбор величины шага квантования по времени Переключательные функции одной переменной (n=1) Базисные логические функции Дизъюнктивная нормальная форма (ДНФ) Общие правила минимизации Инвертор (логический элемент НЕ) Дизъюнктор (логический элемент ИЛИ) ИЛИ–НЕ Сложение по модулю два (нечетность) Сложение по модулю два с отрицанием (четность) Эквивалентность Неэквивалентность И–ИЛИ–НЕ Запрет Логические элементы с третьим состоянием Реализация логических функций в различных базисах Коэффициент разветвления по выходу (Краз) Допустимые значения основных параметров Базовый ЭСЛ - элемент ИЛИ/ИЛИ-НЕ Ом < R < 470 Ом.(8.4) Типовые КЦУ Шифраторы двоично-десятичного кода Дешифратор BCD-кода в семисегментный код Мультиплексоры и демультиплексоры Демультиплексоры Устройства контроля четности (УКЧ) Построение КЦУ на дешифраторах Последовательностные цифровые устройства Синхронные RS - триггеры D-триггеры (триггеры задержки) Триггеры в интегральном исполнении Регистры сдвига Асинхронный суммирующий двоичный счетчик с последовательным переносом Асинхронный вычитающий двоичный счетчик с последовательным переносом Асинхронные реверсивные двоичные счетчики с последовательным переносом Счетчики в интегральном исполнении Распределители Устройство выборки-хранения (УВХ) Цифро-аналоговые преобразователи (ЦАП1...ЦАП3) АЦП К1113 ПВ1 Устройство выборки и хранения (УВХ) Функциональные возможности и схема включения микросхемы УВХ К1100СК2 (КР1100СК2) АЦП MAX154 Расчет АЦП MAX154 Расчет ЦАП К572 ПА1 Расчет ЦАП MAX506 Обмен между МП-м (ОМЭВМ) и ПК по последовательному каналу связи с помощью интерфейса RS-232С Шинный формирователь Выбор ФНЧ Разработка схемы алгоритма и управляющей программы
234167
знаков
51
таблица
162
изображения

10.7 Разработка схемы алгоритма и управляющей программы

Неотъемлемой частью любой микропроцессорной системы является управляющая программа, которая обеспечивает выполнение системой заданных функций.

На рисунке 10.57 приведена схема алгоритма работы ЛМПСУ, структура которой показана на рисунке 10.1.

В начале производится начальная инициализация ведомой ОМЭВМ, включающая начальные установки, программирование таймеров, последовательного и параллельного портов, системы прерываний.

Затем обрабатывается первый (индекс 0) канал трехканальной системы сбора, обработки информации и управления. Это происходит в том случае, если отсутствует прерывание от установки флага RI=1 ведомой ОМЭВМ (входной буфер приемника последовательного канала полон). RI=0 отражает отсутствие необходимости удаленного управления, которое заключается в получении ведомой ОМЭВМ команды от микро ЭВМ более высокой ступени иерархии.

Значение контролируемого параметра 1-го канала (в нашем случае – расход газа) через аналоговый мультиплексор и устройство выборки-хранения, встроенные в микросхему MAX154, поступит на вход АЦП этой микросхемы.

Затем формируется сигнал запуска АЦП, ожидается окончание преобразования и после его завершения информация о текущем значении контролируемого параметра вводится в ОМЭВМ. Здесь это значение сравнивается с заданным, в результате чего вырабатывается сигнал рассогласования, который поступает на цифровой ПИД-регулятор, реализованный программно, и предназначенный для обеспечения требуемого качества процесса управления.

С выхода регулятора снимается управляющее воздействие, которое через параллельный порт ОМЭВМ выводится сигналом  – запись в предварительно выбранный регистр – защелку четырехканального ЦАП MAX506.

Цифровое значение, сохраненное в регистре, непосредственно цифро-аналоговым преобразователем, выполненном на матрице R-2R и операционном усилителе, преобразуется в аналоговую величину – напряжение, которая выдается на соответствующий исполнительный элемент.

После завершения обработки первого канала формируется сигнал сброса для АЦП и аналогично обрабатываются второй канал – измерения давления, а затем третий – измерения температуры.

Если после этого работа системы не завершена, то управление вновь передается обработке 1-го канала и т.д.

Если перед очередным циклом обработки появляется сигнал необходимости удаленного управления, то основная программа прерывается и управление передается подпрограмме, осуществляющей взаимодействие с микро ЭВМ более высокого уровня.

Рабочая управляющая программа, реализующая данный алгоритм на языке Ассемблер ОМЭВМ МК51 приведена в таблице 10.7.

Рисунок 10.57


Таблица 10.7 – Рабочая управляющая программа

Блок Метка Команда Комментарий
1 SETB P2.6 Подача высокого уровня на WR
2 MAIN: JB P3.2, REMCONTROL Переход к подпрограмме удаленного управления при наличии сигнала УУ
3 MOV R0, 0 Установка начального канала
4 LOOP:

MOV A, P2

AND A,#11111100b

OR A, R0

MOV P2, A

Чтение информации из порта P2

Маскировка битов номера канала АЦП

Запись номера канала

Вывод номера канала в порт P2

5 CLR P2.2 Подача низкого уровня на CS, RD
6

NOP

NOP

Задержка для окончания преобразования АЦП
7 MOV A, P1 Чтение данных из АЦП
8

ACALL REG_PROC

MOV R1, A

Вызов подпрограммы ПИД – регуля-тора ПП возвращает результат в аккумуляторе
9

MOV A, R0

MOV C, ACC.0

MOV P2.4, C

MOV C, ACC.1

MOV P2.5, C

SJMP CONTINUE:

Загрузка номера канала в аккумулятор

Побитовый вывод номера канала в ЦАП

10 REMCONTROL: Выполнение команды удаленного управления
11 CHECKEXIT: JNB P3.5, MAIN Переход к началу программы
12 RET Выход из программы
13 CONTINUE:

MOV A, R1

MOV P0, A

Загрузка сигнала управления в аккумулятор

Вывод сигнала управления в ЦАП

14

CLR P2.6

SETB P2.6

Подача перехода 0->1 на ЦАП (запуск)
15 SETB P2.2 Подача высокого уровня на CS, RD
16

INC R0

CJNE A, #3, LOOP

SJMP CHECKEXIT

Переход к следующему каналу

Выполнить для 0..2 канала

Переход к следующей итерации

На рисунке 10.58 дана схема электрическая принципиальная ЛМПСУ, реализующая описанную выше задачу



СПИСОК ЛИТЕРАТУРЫ

1 Цифровая и вычислительная техника. Э.В.Евреинов и др. Под редакцией Э.В. Евреинова. Москва: Радио и связь, 1991. -464с.:ил.

2 Электронные промышленные устройства :Уч. для студ. вузов спец. "Промышленная электроника" В.И. Васильев, Ю.М. Гусев, В.Н. Миронов и др. –М.: Высшая школа, 1988.-303стр.:ил.

3 Руденко В.С. и др. Приборы и устройства промышленной электроники. В.С. Руденко, В.И. Сенько, В.В. Трифонюк (Библиотека инженера ) К.: Техника, 1990. -368cтp.

4 Токхейм Р. Основы цифровой электроники :Пер. с англ. -М.: Мир, 1988. - 392стр.ил.

5 Гутников В.С. Интегральная электроника в измерительных устройствах. 2-е издание, перераб. и дополн. –Л.:Энергоатомиздат. Ленингр. Отделение, 1988.-304стр.: ил.

6 Браммер Ю.А., Пащук И.Н., Импульсная техника .-К.: Высшая школа , 1985.-320стр: ил.

7 Зубчук В.И. и др. Справочник по цифровой схемотехнике /В.И. Зубчук, В.П. Сигорский, А.Н. Шкурко.-К.:Техника, 1990.-448стр.

8 Тули М. Справочное пособие по цифровой электронике:Пер. с англ.-М.: Энергоатомиадат, Ленингр. отделение, 1990. 176стр.: ил.

9 Димитрова М.И., Пунджев В.П. 33 схемы с логическими элементами И-HЕ: Пер. с болг.-Л.: Энергоатомиздат. Ленингр. отделение, 1988. 112стр.:ил.

10 Федорков Б.Г., Телец В.А. Мкросхемы ЦАП и АЦП: функционирование, параметры, применение. -М .Энергоатомиздат, 1990. -320стр.:ил.

11 Цифровые интегральные микросхемы: Справочник /П.П. Мальцев, Н.С. Долидзе, М.И. Критенко и др. –М.: Радио и связь, 1994.-240стр : ил.

12 Вениаминов В.Н., Лебедев О.Н.. Мирошниченко А.И. Микросхемы и их применение: Справ. Пособие.-3-е изд., перераб. и доп.-М . Радио и связь, 1989 240стр.:ил.-(Массовая радиобиблиотека: Вып. 1143).


Информация о работе «Компьютерная схемотехника»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 234167
Количество таблиц: 51
Количество изображений: 162

Похожие работы

Скачать
100365
3
18

... правило, выполняется в виде одной «большой» ИМС. Схемотехника является частью микроэлектроники, предметом которой являются методы построения устройств различного назначения на микросхемах широкого применения. Предметом же цифровой схемотехники являются методы построения (проектирования) устройств только на цифровых ИМС. Особенностью цифровой схемотехники является широкое применение для описания ...

Скачать
35831
55
44

осхемы К155ЛА3 (4 логических элемента 2И-НЕ). Принцип работы ЛЭ И-НЕ ТТЛ Основная особенность микросхем ТТЛ состоит в том, что во входной цепи используется специфический интегральный прибор – многоэмиттерный транзистор (МЭТ), имеющий несколько эмиттеров, объединенных общей базой. Эмиттеры расположены так, что непосредственное взаимодействие между ними через участок базы отсутствует. Поэтому МЭТ ...

Скачать
38073
13
21

... . Минимальное количество листов графических работ формата А1 — два. Графические документы выполняются карандашом или черной тушью на листах ватмана формата А1. Возможно выполнение чертежей с применением ЭВМ. Допускается использовать формат А2. Листы нумеруются. Номер помещается в верхнем левом углу листа. Допускается выполнять номера на отдельных листах бумаги, которые прикрепляются во время ...

Скачать
34672
3
0

устройств вычислительной техники. Задачи проекта: Разработать печатную плату устройства управления питания компьютерной системы, произвести выбор и обоснование технологического процесса изготовления печатной платы, с исходными данными к проекту: схема электрическая принципиальная. Объём и содержание расчётно-пояснительной записки и графических работ произвести согласно техническому заданию. ...

0 комментариев


Наверх