2.4.1 Лемма

Множество  является классом толерантности.

Так как  состоит из всех множеств вида , то число элементов множества  равно  – число всех подмножеств множества из оставшихся  номеров.

Найденных классов  достаточно, чтобы задать толерантность в .

Точный смысл этого утверждения состоит в том, что соотношение  выполняется тогда и только тогда, когда существует класс  содержащий одновременно  и . Действительно, если , то  и  содержат некоторый общий номер , и тем самым входят в класс . Обратное столь же очевидно. Значит, лемма 2.3.3 допускает для пространства  уточнение. Для проверки толерантности достаточно ограничиться проверкой вхождения в один из классов . Однако, в  кроме  есть еще классы толерантности. Так, в  множество  образует класс. Ясно, что этот класс не совпадает ни с одним , так как не содержит элементов вида .

Определение. Совокупность  классов в пространстве толерантности  называется базисом, если:

1) для всякой толерантной пары  и  существует класс , содержащий оба этих элемента: ;

2) удаление из  хотя бы одного класса приводит к потере этого свойства, т.е.  существует толерантная пара , , для которой  является единственным общим классом толерантности в .

Замечание. Произвольная система классов толерантности, обладающая свойством 1) из определения 2.4.1, содержит базис. Чтобы выделить этот базис, достаточно последовательно удалить "лишние" классы. В качестве исходной системы можно выбрать все множество классов. Отсюда следует существование базиса в любом пространстве толерантности.

Теорема. Пусть  – произвольное пространство толерантности, а  – базис. Тогда существует отображение  такое, что элементы из  толерантны в том и только в том случае, когда толерантны их образы в .

Смысл теоремы состоит в том, что любое пространство толерантности реализуется как система множеств классов из базиса с естественной толерантностью типа .

Выше было показано, что в пространстве толерантности  набор классов  образует базис, не совпадающий с совокупностью всех классов.

Установим одно простое свойство всех классов толерантности в .


Информация о работе «Отношения эквивалентности и толерантности и их свойства»
Раздел: Математика
Количество знаков с пробелами: 66989
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
102605
4
0

... чем «я», делает мировосприятие более многомерным, целостным, а значит более адекватным реальности [10, c.23-27]. Глава 2. Государственно-правовое регулирование проблем толерантности в современном обществе   2.1 Анализ правовых актов по проблемам толерантности В Декларации о ликвидации всех форм дискриминации на основе религии или убеждений, которая была принята Генеральной Ассамблеей ООН 25 ...

Скачать
107976
3
5

... сигналов, передающихся от одного живого организма другому (от родителей - потомкам) или от одних клеток, тканей, органов другим в процессе развития особи; 6.   в математике, кибернетике – количественная мера устранения энтропии (неопределенности), мера организации системы; 7.         в философии – свойство материальных объектов и процессов сохранять и порождать определенное состояние, которое в ...

Скачать
611708
8
6

... в отечественной теории и практике психологических измерений. Хотя концепт осмысленности измерения развивается с трансформацией идей Стивенса и разработкой проблем статистики и логики, его положения относительно шкалирования, по проблемам измерений в психологии и связанной с ними осмысленностью измерений требуют, на наш взгляд, критического анализа привычной практики использования психологического ...

Скачать
33860
0
1

... N(X)N, состоящее из тех и только из тех i, для которых = 1. Это объясняет, почему изложение вероятностных и статистических результатов, относящихся к анализу данных, являющихся объектами нечисловой природы перечисленных выше видов, велось [37, гл.4] на языке конечных случайных множеств. Множества как исходные данные появляются и в иных постановках. Из геологических реалий исходил Ж.Матерон ...

0 комментариев


Наверх